Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh được các bất đẳng thức bằng biến đổi tương đương và bất đẳng thức Cô-si:
\(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)
\(xy+yz+zx\ge3\sqrt[3]{\left(xyz\right)^2}\)
\(\Rightarrow\frac{xyz}{xy+yz+zx}\le\frac{\sqrt[3]{xyz}}{3}\)
Mà \(\sqrt[3]{xyz}\le\frac{x+y+z}{3}\le\frac{\sqrt{3\left(x^2+y^2+z^2\right)}}{3}\)
Vậy \(A\le\frac{\sqrt{3\left(x^2+y^2+z^2\right)}}{3}.\frac{\sqrt{3\left(x^2+y^2+z^2\right)}+\sqrt{x^2+y^2+z^2}}{x^2+y^2+z^2}\)
\(A\le\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{3}=\frac{3+\sqrt{3}}{3}\)
Bổ đề: \(\left(mn+np+pm\right)^2\ge3mnp\left(m+n+p\right)\)(*)
Thật vậy: (*)\(\Leftrightarrow m^2n^2+n^2p^2+p^2m^2+2mnp\left(m+n+p\right)\ge3mnp\left(m+n+p\right)\)\(\Leftrightarrow m^2n^2+n^2p^2+p^2m^2\ge mnp\left(m+n+p\right)\)\(\Leftrightarrow m^2n^2+n^2p^2+p^2m^2-mnp\left(m+n+p\right)\ge0\)\(\Leftrightarrow\left(mn-np\right)^2+\left(np-pm\right)^2+\left(pm-mn\right)^2\ge0\)*đúng*
Vậy bổ đề được chứng minh
Áp dụng vào bài toán, ta được: \(\left(xy+yz+zx\right)^2\ge3xyz\left(x+y+z\right)\)hay \(\left(xy+yz+zx\right)^2\ge3\left(x+y+z\right)\)(Do xyz = 1)
\(\Leftrightarrow\frac{1}{x+y+z}\ge\frac{3}{\left(xy+yz+zx\right)^2}\Rightarrow A\ge\frac{3}{\left(xy+yz+zx\right)^2}-\frac{2}{xy+yz+zx}\)
Đặt \(\frac{1}{xy+yz+zx}=s\)thì \(A\ge3s^2-2s=3\left(s^2-\frac{2}{3}s+\frac{1}{9}\right)-\frac{1}{3}=3\left(s-\frac{1}{3}\right)^2-\frac{1}{3}\ge-\frac{1}{3}\)
Vậy \(A\ge-\frac{1}{3}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x,y,z>0\\x=y=z\\\frac{1}{xy+yz+zx}=\frac{1}{3}\end{cases}}\Rightarrow x=y=z=1\)
Vậy \(MinA=-\frac{1}{3}\), đạt được khi x = y = z = 1
a) Đặt \(\hept{\begin{cases}x+y-z=a\\y+z-x=b\\z+x-y=c\end{cases}\Rightarrow}x=\frac{a+c}{2};y=\frac{b+a}{2};z=\frac{c+b}{2}\)
Suy ra bất đẳng thức cần chứng minh tương đương với: \(\frac{a+b}{2}.\frac{b+c}{2}.\frac{c+a}{2}\ge abc\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\ge abc\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Áp dụng bất đẳng thức AM-GM: \(\hept{\begin{cases}a+b\ge2\sqrt{ab}\ge0\\b+c\ge2\sqrt{bc}\ge0\\c+a\ge2\sqrt{ca}\ge0\end{cases}\Rightarrow}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{\left(abc\right)^2}=8abc\)
Vật bất đẳng thức được chứng minh
Dấu "=" xảy ra khi \(a=b=c\Leftrightarrow x=y=z\)
Ta có: \(3=x^2+y^2+z^2\ge xy+yz+xz\ge\frac{\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}{3}\)
=> \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le3\)
\(M=\frac{xyz}{x^2+yz}+\frac{xyz}{y^2+zx}+\frac{xyz}{z^2+xy}\)
\(\le\frac{xyz}{2x\sqrt{yz}}+\frac{xyz}{2y\sqrt{xz}}+\frac{xyz}{2z\sqrt{xy}}\)
\(=\frac{1}{2}\left(\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\right)\le\frac{3}{2}\)
Dấu "=" xảy ra <=> x = y = z=1
Ta có \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\left(x,y,z>0\right)\).
\(\Leftrightarrow\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}=1\).
\(P=\frac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+y^2}\right)\)\(\left(x,y,z>0\right)\).
Ta có:
\(\sqrt{2y^2+2yz+2z^2}=\sqrt{\frac{5}{4}\left(y^2+2yz+z^2\right)+\frac{3}{4}\left(y^2-2yz+z^2\right)}\)
\(=\sqrt{\frac{5}{4}\left(y+z\right)^2+\frac{3}{4}\left(y-z\right)^2}\).
Ta có:
\(\frac{3}{4}\left(y-z\right)^2\ge0\forall y;z>0\).
\(\Leftrightarrow\frac{3}{4}\left(y-z\right)^2+\frac{5}{4}\left(y+z\right)^2\ge\frac{5}{4}\left(y+z\right)^2\forall y;z>0\).
\(\Rightarrow\sqrt{\frac{3}{4}\left(y-z\right)^2+\frac{5}{4}\left(y+z\right)^2}\ge\frac{\sqrt{5}}{2}\left(y+z\right)\forall y,z>0\).
\(\Leftrightarrow\sqrt{2y^2+yz+2z^2}\ge\frac{\sqrt{5}}{2}\left(y+z\right)\forall y;z>0\).
\(\Leftrightarrow x\sqrt{2y^2+yz+2z^2}\ge\frac{\sqrt{5}}{2}x\left(y+z\right)\forall x;y;z>0\left(1\right)\).
Chứng minh tương tự, ta được:
\(y\sqrt{2x^2+xz+2z^2}\ge\frac{\sqrt{5}}{2}y\left(x+z\right)\forall x;y;z>0\left(2\right)\).
Chứng minh tương tự, ta được:
\(z\sqrt{2x^2+xy+2y^2}\ge\frac{\sqrt{5}}{2}z\left(x+y\right)\forall x;y;z>0\left(3\right)\).
Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:
\(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+2y^2}\)\(\ge\)\(\frac{\sqrt{5}}{2}\left[x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\right]=\sqrt{5}\left(xy+yz+zx\right)\).
\(\Leftrightarrow\frac{1}{xyz}\left(x\sqrt{2y^2+yz+z^2}+y\sqrt{2z^2+zx+2x^2}+z\sqrt{2x^2+xy+2y^2}\right)\)\(\ge\)\(\frac{\sqrt{5}\left(xy+yz+zx\right)}{xyz}=\sqrt{5}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\).
\(\Leftrightarrow P\ge\frac{\sqrt{5}}{3}.3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{\sqrt{5}}{3}\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\)
\(\left(4\right)\).
Vì \(x,y,z>0\)nên áp dụng bất đẳng thức Bu-nhi-a-cốp-xki, ta được:
\(\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\)\(\left(1.\frac{1}{\sqrt{x}}+1.\frac{1}{\sqrt{y}}+1.\frac{1}{\sqrt{z}}\right)^2\).
\(\Leftrightarrow\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)^2=1^2=1\)
(vì\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}=1\)).
\(\Leftrightarrow\frac{\sqrt{5}}{3}\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\frac{\sqrt{5}}{3}\)\(\left(5\right)\).
Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:
\(P\ge\frac{\sqrt{5}}{3}\).
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}x=y=z>0\\\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\end{cases}}\Leftrightarrow x=y=z=9\).
Vậy \(minP=\frac{\sqrt{5}}{3}\Leftrightarrow x=y=z=9\).
ta chứng minh A>=2 (1) thật vậy
\(A\ge2\Leftrightarrow\left(x+y+z\right)^2\ge4\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge x^2+y^2+z^2+xyz\)
\(\Leftrightarrow2xy+2yz+2xz\ge xyz\)
từ giả thiết => \(0\le x;y;z\le2\)do đó \(2xy+2yz+2zx\ge2xy\ge xyz\)
vậy (1) được chứng minh. dấu "=" xảy ra khi (x;y;z)=(2;0;0) và các hoán vị