chứng minh rằng
a trong hai stn liên tiếp có 1 số chia hết cho 2
b trong 3 stn liên tiếp chia hết 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. gọi 3 stn liên tiếp là n,n+1,n+2
ta có n+n+1+n+2 = 3n +3 = 3(n+1) : hết cho 3
2. gọi 4 stn liên tiếp là n,n+1,n+2,n+3
ta có n+n+1+n+2+n+3 = 4n+6
vì 4n ; hết cho 4 mà 6 : hết cho 4
=> 4n+6 ko : hết cho 4
3. gọi 2 stn liên tiếp đó là a,b
ta có a=5q + r
b=5q1 +r
a-b = ( 5q +r) - (5q1+r)
= 5q - 5q1
= 5(q-q1) : hết cho 5
a,Gọi 2 STN liên tiếp là a; a+1
Với a=2k( k thuộc N) => a chia hết cho 2(1)
Với a=2k+1( k thuộc N) => a+1=2k+1+1=2k+2=2.(k+1) chia hết cho 2 ( do 2 chia hết cho2) =>a+1 chia hết cho 2(2)
Từ (1) và (2) ,ta có 2 số tự nhiên liên tiếp luôn có 1 số chia hết cho 2
Vậy trong 2 STN liên tiếp có 1 số chia hết cho 2
Gọi 3 số tự nhiên liên tiếp đó là a,a+1,a+2
TH1 nếu a chia hết cho 3
=> a có dạng 3k
=>a+1=3k+1(ko chia hết cho 3)
=>a+2=3k+2(ko chia hết cho 3)
Vậy trong 3 số chỉ có duy nhất 1 số a chia hết cho 3
TH2 a+1 chia hết cho 3
=>a+1 có dạng 3k
=>a=3k-1 (ko chia hết cho 3)
=>a+2=3k+1(ko chia hết cho 3)
=>Vậy trong 3 số chỉ có duy nhất 1 số a+1 chia hết cho 3
TH3 (làm tương tự nha bạn)
b,Tick rồi mình làm tiếp cho
a﴿ gọi 2 số tự nhiên liên tiếp là n,n + 1﴾n ∈ N﴿
Nếu n chia hết cho 2 thì ta có điều cần chứng tỏ
Nếu n = 2k + 1 thì n + 1 = 2k +2 chia hết cho 2
b﴿Gọi 2 số tự nhiên liên tiếp là:n,n+1,n+2﴾n ∈ N﴿
Ta có n + ﴾n +1﴿+﴾n+2﴿ = 3n +3 chia hết cho 3﴾vì 3n chia hết cho 3 và 3 chia hết cho 3﴿
a/ Gọi 3 số nguyên liên tiếp là a; a+1; a+2.
Theo GT ta có : \(a+\left(a+1\right)+\left(a+2\right)=3a+3\)
=3(a+1) \(⋮3\)(vì \(3⋮3\))
Vậy tổng ba số nguyên liên tiếp là số chia hết cho 3.
b/ Gọi 4 số cần tìm là a ; a+1; a+2 ; a+3
Theo Gt ta có :a+(a+1)+(a+2)+(a+3) = 4a+6
=2(2a+3)\(⋮̸4\)( vì số chia hết cho 2 chưa chắc chia hết cho 4)
Vậy tổng của 4 số nguyên liên tiếp không chia hết cho 4.
a) 3 số liên tiếp là: n, n+1, n+2. ( n thuộc N )
Ta có: n + (n+1) + (n+2)= 3n+3 = 3(n+1) chia hết cho 3
b) 4 số liên tiếp: n, n+1, n+2, n+3 (n thuộc N )
Ta có: n+(n+1)+(n+2)+(n+3)= 4n+6 ko chia hết cho 4 vì: 4n chia hết cho 4 nhưng 6 ko chia hết cho 4.
a,ta có 2 STN liên tiếp là : a,a+1
a . (a + 1 )
Trường hợp 1
Nếu a là số chẵn thì \(⋮\)2 => a . ( a + 1 ) \(⋮\)2 ( Áp dụng tính chất : Nếu có 1 thừa số trong 1 tích chia hết cho số đó thì tích chia hết cho số đó : Ví dụ : 1 . 2 ; 2 chia hết cho 2 => 1.2 = 2 chia hết cho 2 ; 2.3 chia hết cho 2 vì 2 chia hết cho 2 )
Trường hợp 2
Nếu a là số lẻ => a + 1 là số chẵn chi hết cho 2 => a . (a + 1) chia hết cho 2
Vậy Tích của 2 số tự nhiên liên tiếp chia hết cho 2
Câu b :
ta gọi như câu a : a , a+1,a+2
ta có : a . ( a + 1 ) . ( a + 2 )
TH1 nếu a chia hết cho 3 => tích của 3 STH liên tiếp chai hết cho 3
TH2 Nếu a+1 chia hết cho 3 => Tích của 3 STH liên tiếp chai hết cho 3
TH3 nếu a + 2 chia hết cho 3 = > Tích của 3 STH liên tiếp chai hết cho 3
gọi 3 STN đó là a,a+1,a+2
nếu a=3k+1
thì a+1=3k+2
và a+2=3k+3 chia hết cho 3
vậy trong 3 STN liên tiếp có 1 số chia hết cho 3
có nhu cầu thì kết bạn
hai số tự nhiên liên tiếp có 1 số lẻ và 1 số chẵn
mà số chẵn thì chia hết cho 2
trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
ví dụ :
1 , 2 , 3
59 , 60 , 61
.........
nhé !
a ) 2 stn liên tiếp có dạng : n và n + 1
nếu n chẵn suy ra n chẵn chia hết cho 2
nếu n lẻ n +1 là chẵn chia hết cho 2
b) 3 stn liên tiếp có dạng : n ; n+1 ;n+2
suy ra 3n + 3 chia hết cho 3