Tìm m để phương trình có 2 nghiệm
\(\left(m^2-m+1\right)x^2+4x+1=0\)
....
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left(2m-4\right)^2-4\left(m^2-3\right)>=0\)
\(\Leftrightarrow4m^2-16m+16-4m^2+12>=0\)
=>-16m>=-28
hay m<=7/4
b: \(\Leftrightarrow16m^2-4\left(2m-1\right)\left(2m+3\right)=0\)
\(\Leftrightarrow16m^2-4\left(4m^2+4m-3\right)=0\)
=>4m-3=0
hay m=3/4
c: \(\Leftrightarrow\left(4m-2\right)^2-4\cdot4\cdot m^2< 0\)
=>-16m+4<0
hay m>1/4
Ta có:
\(a-b+c=4-\left(m^2+2m-15\right)+\left(m+1\right)^2-20\)
\(=-m^2-2m+19+m^2+2m+1-20\)
\(=0\)
\(\Rightarrow\) Phương trình đã cho luôn luôn có 2 nghiệm: \(\left[{}\begin{matrix}x=-1\\x=\dfrac{20-\left(m+1\right)^2}{4}\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x_1=-1\\x_2=5-\dfrac{\left(m+1\right)^2}{4}\end{matrix}\right.\)
\(\Rightarrow1+5-\dfrac{\left(m+1\right)^2}{4}+2019=0\)
\(\Leftrightarrow\left(m+1\right)^2=8100\Rightarrow\left[{}\begin{matrix}m+1=90\\m+1=-90\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=89\\m=-91\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x_1=5-\dfrac{\left(m+1\right)^2}{4}\\x_2=-1\end{matrix}\right.\)
\(\Rightarrow\left[5-\dfrac{\left(m+1\right)^2}{4}\right]^2-1+2019=0\)
\(\Leftrightarrow\left[5-\dfrac{\left(m+1\right)^2}{4}\right]^2+2018=0\) (vô nghiệm do vế trái luôn dương)
Vậy \(\left[{}\begin{matrix}m=89\\m=-91\end{matrix}\right.\)
b) Thay x=2 vào pt, ta được:
\(4\left(m^2-1\right)-4m+m^2+m+4=0\)
\(\Leftrightarrow4m^2-4-4m+m^2+m+4=0\)
\(\Leftrightarrow5m^2-3m=0\)
\(\Leftrightarrow m\left(5m-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{3}{5}\end{matrix}\right.\)
Áp dụng hệ thức Vi-et, ta được:
\(x_1+x_2=\dfrac{2m}{m^2-1}\)
\(\Leftrightarrow\left[{}\begin{matrix}x_2+2=0\\x_2+2=\dfrac{6}{5}:\left(\dfrac{36}{25}-1\right)=\dfrac{30}{11}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x_2=-2\\x_2=\dfrac{8}{11}\end{matrix}\right.\)
a: \(\Leftrightarrow\left(2m+1\right)^2-4\left(m^2-3\right)=0\)
\(\Leftrightarrow4m^2+4m+1-4m^2+12=0\)
=>4m=-13
hay m=-13/4
c: \(\Leftrightarrow\left(2m-2\right)^2-4m^2>=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2>=0\)
=>-8m>=-4
hay m<=1/2
\(a,\Leftrightarrow\Delta'\ge0\\ \Leftrightarrow\left(m+2\right)^2-\left(m^2-4\right)\ge0\\ \Leftrightarrow m^2+4m+4-m^2+4\ge0\\ \Leftrightarrow4m+8\ge0\\ \Leftrightarrow m\ge-2\\ b,\Leftrightarrow\Delta'=0\Leftrightarrow m=-2\)
\(x^4+4x^3+4x^2-4mx^2-8mx+3m+1=0\)
\(\Leftrightarrow\left(x^2+2x\right)^2-4m\left(x^2+2x\right)+3m+1=0\)
Đặt \(x^2+2x=t\ge-1\)
\(\Rightarrow f\left(t\right)=t^2-4m.t+3m+1=0\) (1)
\(\Delta'=4m^2-3m-1\ge0\Rightarrow\)\(\left[{}\begin{matrix}m\ge1\\m\le-\dfrac{1}{4}\end{matrix}\right.\)
Khi đó (1) có 2 nghiệm thỏa mãn \(t_1\le t_2< -1\) khi
\(\left\{{}\begin{matrix}f\left(-1\right)>0\\\dfrac{t_1+t_2}{2}< -1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7m+2>0\\2m< -1\end{matrix}\right.\) (ko tồn tại m thỏa mãn)
\(\Rightarrow\) (1) luôn có ít nhất 1 nghiệm không nhỏ hơn -1
\(\Rightarrow\) Pt đã cho có nghiệm khi \(\left[{}\begin{matrix}m\ge1\\m\le-\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[\left(x-2\right)^2-4\right]^2-3\left(x-2\right)^2+m=0\)
\(\left(x-2\right)^2=t\ge0\Rightarrow pt\Leftrightarrow\left(t-4\right)^2-3t+m=0\)
\(\Leftrightarrow t^2-11t+16+m=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=11^2-4\left(16+m\right)>0\\x_1+x_2=11>0\left(tm\right)\\x_1x_2=16+m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{57}{4}\\m< 16\end{matrix}\right.\Leftrightarrow m< \dfrac{57}{4}\)
\(\Delta\ge0\Rightarrow-m^2+m+3\ge0\)
\(m^2-m-3\le0\Leftrightarrow\left(m-\dfrac{1-\sqrt{13}}{2}\right)\left(m-\dfrac{1+\sqrt{13}}{2}\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m-\dfrac{1-\sqrt{13}}{2}\ge0\\m-\dfrac{1+\sqrt{13}}{2}\le0\end{matrix}\right.\\\left\{{}\begin{matrix}m-\dfrac{1-\sqrt{13}}{2}\le0\\m-\dfrac{1+\sqrt{13}}{2}\ge0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\ge\dfrac{1-\sqrt{13}}{2}\\m\le\dfrac{1+\sqrt{13}}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}m\le\dfrac{1-\sqrt{13}}{2}\\m\ge\dfrac{1+\sqrt{13}}{2}\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\dfrac{1-\sqrt{13}}{2}\le m\le\dfrac{1+\sqrt{13}}{2}\left(1\right)\\\dfrac{1+\sqrt{13}}{2}\le m\le\dfrac{1-\sqrt{13}}{2}\left(2\right)\end{matrix}\right.\)
(2) vô lý => chọn (1)
Vậy .... đc chưa :))))
De phuong trinh co 2 nghiem thi \(\Delta\ge0\)
\(4^2-4\left(m^2-m+1\right)\ge0\)
\(< =>16-4m^2+4m-4\ge0\)
\(< =>4m^2-4m-12\le0\)
\(< =>\left(2m-1\right)^2\le13\)
\(< =>-\sqrt{13}\le2m-1\le\sqrt{13}\)
\(< =>\dfrac{1-\sqrt{13}}{2}\le m\le\dfrac{\sqrt{13}+1}{2}\)