Giúp e vẽ hình và làm câu 34 đi ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 17.
Xét tam giác IHJ vuông tại H:
\(sinr=\dfrac{HJ}{IJ}=\dfrac{HJ}{\sqrt{HI^2+HJ^2}}\)
Chiết xuất: \(\dfrac{sini}{sinr}=n\)
\(\Rightarrow\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{HI^2+HJ^2}}{HJ}=\dfrac{4}{3}\)
\(\Rightarrow\dfrac{3}{4}\cdot\dfrac{60^2+HJ^2}{HJ^2}=\dfrac{16}{9}\Rightarrow HJ=51,25cm\)
Độ dài bóng của thành bể tạo ở đáy:
\(HJ+x=85,9cm\)
Chọn A
Góc giới hạn phản xạ toàn phần:
\(sini_{gh}=\dfrac{n_2}{n_1}\)
\(\Rightarrow sini_{gh}=\dfrac{\dfrac{4}{3}}{\sqrt{3}}=\dfrac{4\sqrt{3}}{9}\)
\(\Rightarrow i_{gh}=50,2^o\)
Chọn A
Xét \(\Delta HIJ\) vuông tại H:
\(sinr=\dfrac{HJ}{IJ}=\dfrac{HJ}{\sqrt{HI^2+HJ^2}}\)
\(\Rightarrow\dfrac{sini}{sinr}=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{HI^2+HJ^2}}{HJ}=n\)
\(\Rightarrow\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{60^2+HJ^2}}{HJ}=\dfrac{4}{3}\)
\(\Rightarrow HJ=51,25cm\)
Độ dài vệt sáng:
\(y=x+HJ=85,9cm\)
Chọn B
38.
\(y'=2x^2-8x+9=2\left(x-2\right)^2+1\ge1\)
\(\Rightarrow\) Tiếp tuyến có hệ số góc nhỏ nhất bằng 1 khi \(x_0-2=0\Rightarrow x_0=2\)
\(y\left(2\right)=-\dfrac{11}{3}\)
Phương trình d:
\(y=1\left(x-2\right)-\dfrac{11}{3}=x-\dfrac{17}{3}\)
Thay tọa độ 4 điểm của đáp án, chỉ có \(P\left(5;-\dfrac{2}{3}\right)\) thỏa mãn
39.
Gọi E là trung điểm AB, F là trung điểm CD
Từ E kẻ EH vuông góc SF (H thuộc SF)
Do tam giác SAB đều \(\Rightarrow SE\perp AB\Rightarrow SE\perp\left(ABCD\right)\)
\(\Rightarrow SE\perp CD\)
\(EF||AD\Rightarrow EF\perp CD\)
\(\Rightarrow CD\perp\left(SEF\right)\) \(\Rightarrow CD\perp EH\)
\(\Rightarrow EH\perp\left(SCD\right)\Rightarrow EH=d\left(E;\left(SCD\right)\right)\)
Lai có: \(AB||CD\Rightarrow AB||\left(SCD\right)\Rightarrow d\left(A;\left(SCD\right)\right)=d\left(E;\left(SCD\right)\right)=EH\)
\(SE=\dfrac{AB\sqrt{3}}{2}=\dfrac{\sqrt{3}}{2}\) ; \(EF=AD=1\)
Hệ thức lượng: \(d=HE=\dfrac{SE.EF}{\sqrt{SE^2+EF^2}}=\dfrac{\sqrt{21}}{7}\)
Câu 9.
Tại điểm \(I\): \(i=r=0\)
Tia sáng truyền thẳng vào lăng kính.
Tại điểm J có \(i_J=30^o\)
Theo định luật khúc xạ ánh sáng:
\(sinr=nsini_J=1,5\cdot sin30^o=\dfrac{3}{4}\Rightarrow r=arcsin\dfrac{3}{4}\)
Góc lệch:
\(D=r-i_J=arcsin\dfrac{3}{4}-30^o\approx18,6^o\)
Chọn B.
Hình vẽ tham khảo sgk lí 11!!!
Câu 12.
Ta có: \(\dfrac{sini}{sinr}=n\Rightarrow\dfrac{sin60^o}{sinr}=1,5\)
\(\Rightarrow sinr=\dfrac{\sqrt{3}}{3}\)
\(\Rightarrow r\approx35,3^o\)
Chọn C
Xét (O) có
ΔMEN nội tiếp
MN là đường kính
Do đó: ΔMEN vuông tại E
=>\(\widehat{MEN}=90^0\)
=>\(\widehat{FEN}=90^0\)
Xét tứ giác HFEN có
\(\widehat{FHN}+\widehat{FEN}=90^0+90^0=180^0\)
=>HFEN là tứ giác nội tiếp
=>H,F,E,N cùng thuộc một đường tròn
Gọi E là giao điểm HK và AC
\(\Rightarrow E\) là trung điểm OC \(\Rightarrow OE=\dfrac{1}{2}OC=\dfrac{1}{2}OA\)
\(\Rightarrow d\left(E;\left(SBD\right)\right)=\dfrac{1}{2}d\left(A;\left(SBD\right)\right)\)
HK là đường trung bình tam giác BCD \(\Rightarrow HK||BD\)
\(\Rightarrow d\left(HK;SD\right)=d\left(HK;\left(SBD\right)\right)=d\left(E;\left(SBD\right)\right)=\dfrac{1}{2}d\left(A;\left(SBD\right)\right)\)
Từ A kẻ \(AF\perp SO\Rightarrow AF\perp\left(SBD\right)\Rightarrow AF=d\left(A;\left(SBD\right)\right)\)
\(AO=\dfrac{1}{2}AC=\dfrac{a\sqrt{2}}{2}\)
Hệ thức lượng:
\(AF=\dfrac{SA.AO}{\sqrt{SA^2+AO^2}}=\dfrac{2a}{3}\)
\(\Rightarrow d\left(HK;SD\right)=\dfrac{1}{2}AF=\dfrac{a}{3}\)