K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2022

GTLN là j vậy ạ

11 tháng 4 2022

Tham khảo

P=(4x2x2 +25y2y2 - 20xy) - (225y2y2 +36x2x2 - 180xy) - /xy-90/

  =4x2x2 +25y2y2 - 20xy - 225y2y2 - 36x2x2 + 180xy - /xy-90/

  =-32x2x2 + 160xy - 200y2y2 -/xy-90/

=-8(4x2x2 - 20xy + 25y2y2) -/xy-90/
= -8 (2x−5y)2(2x−5y)2 -/xy-90/

Ta thấy:(4x2x2 - 20xy + 25y2y2) /xy-90/≥≥ 0 và /xy-90//≥≥ 0

8 (2x−5y)2(2x−5y)2≤≤ 0 và -/xy-90//≤≤ 0

Do đó:- -8 (2x−5y)2
Hay: P/ 0

Vậy: GTLN của P là 0 đạt được khi {2x−5y=0xy−90=0 ⇒ [x=15⇒y=6x=−15⇒y=−6 

31 tháng 1 2019

giúp mình với

28 tháng 2 2021

ai biết ko

28 tháng 2 2021

bài này dễ lắm

28 tháng 3 2019

Ta có:\(P=\left(2x-5y\right)^2-\left(15y-6x\right)^2-\left|xy-90\right|\)

\(=\left(2x-5y\right)^2-\left(6x-15y\right)^2-\left|xy-90\right|\)

\(=\left(2x-5y\right)^2-9\left(2x-5y\right)^2-\left|xy-90\right|\)

\(=-8\left(2x-5y\right)^2-\left|xy-90\right|\)

\(=-\left[8\left(2x-5y\right)^2+\left|xy-90\right|\right]\)

Do \(8\left(2x-5y\right)^2\ge0;\left|xy-90\right|\ge0\Rightarrow8\left(2x-5y\right)^2+\left|xy-90\right|\ge0\)

\(\Rightarrow P\le0\)

Dấu "=" xảy ra khi và chỉ khi:\(\hept{\begin{cases}8\left(2x-5y\right)^2=0\\\left|xy-90\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}2x-5y=0\\xy-90=0\end{cases}}\Rightarrow\hept{\begin{cases}2x=5y\\xy=90\end{cases}}\)

\(\Rightarrow2xy=5y^2\Rightarrow2\cdot90=5y^2\Rightarrow5y^2=180\Rightarrow y^2=36\Rightarrow\orbr{\begin{cases}y=6\\y=-6\end{cases}}\Rightarrow\orbr{\begin{cases}x=15\\x=-15\end{cases}}\)

Vậy \(P_{max}=0\Leftrightarrow x=15;y=6\left(h\right)x=-15;y=-6\)

P/S:(h) có nghĩa là hoặc.

23 tháng 1 2020

\(P=\left(2x-5y\right)^2-\left(15y-6x\right)^2-\left|xy-90\right|\)

\(\Leftrightarrow P=\left(2x-5y\right)^2-\left(6x-15y\right)^2-\left|xy-90\right|\)

\(\Leftrightarrow P=\left(2x-5y\right)^2-3\left(2x-3y\right)^2-\left|xy-90\right|\)

\(\Leftrightarrow P=\left(2x-5y\right)^2.\left(1-3\right)-\left|xy-90\right|\)

\(\Leftrightarrow P=-4\left(2x-5y\right)^2-\left|xy-90\right|\)

\(\Leftrightarrow P=-\left[4\left(2x-5y\right)^2-\left|xy-90\right|\right]\)

Ta có \(\hept{\begin{cases}\left(2x-5y\right)^2\ge0\\\left|xy-90\right|\ge0\end{cases}}\forall xy\)

\(\Rightarrow\hept{\begin{cases}4\left(2x-5y\right)^2\ge0\\\left|xy-90\right|\ge0\end{cases}}\forall xy\)

\(\Rightarrow P=-\left[4\left(2x-5y\right)^2+\left|xy-90\right|\right]\le0\forall xy\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}4\left(2x-5y\right)^2=0\\\left|xy-90\right|=0\end{cases}}\)

                      \(\Leftrightarrow\hept{\begin{cases}\left(2x-5y\right)^2=0\\xy-90=0\end{cases}}\)

                     \(\Leftrightarrow\hept{\begin{cases}2x-5y=0\\xy=90\end{cases}}\)

                     \(\Leftrightarrow\hept{\begin{cases}2x=5y\\xy=90\end{cases}}\)

               \(\Leftrightarrow2xy=5y^2\)\(\Leftrightarrow2.90=5y^2\Leftrightarrow5y^2=180\Leftrightarrow y^2=36\)

                                                                                                              \(\Rightarrow\orbr{\begin{cases}y=6\\y=-6\end{cases}}\Rightarrow\orbr{\begin{cases}x=90:6=15\\x=90:\left(-6\right)=-15\end{cases}}\)

Vậy \(P_{max}=0\Leftrightarrow x=15;y=6\)  hoặc x=-15; y=-6

Có 1 vài chỗ ko ok cho lắm bạn thông cảm

Học tốt

23 tháng 1 2020

Trả lời : 

Bn tham khảo link này :  

https://olm.vn/hoi-dap/detail/216085412740.html 

( Vào thống kê hỏi đáp của mk sẽ thấy ) 

18 tháng 3 2019

GIÚP MÌNH , MÌNH ĐANG VỘI LẮM 

19 tháng 3 2019

huhuhu#

Khó ghê !!!

Mik xin lỗi !!! Mik ko làm được nhé !!!

a: \(=\dfrac{3x-x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)

b: \(=\dfrac{1}{x\left(y-x\right)}-\dfrac{1}{y\left(y-x\right)}\)

\(=\dfrac{y-x}{xy\left(y-x\right)}=\dfrac{1}{xy}\)

c: \(=\dfrac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}\cdot\dfrac{3x}{2\left(1-2x\right)}\)

\(=\dfrac{3\left(1+2x\right)}{2\left(x+4\right)}\)

d: \(=\dfrac{12x}{8x^3}\cdot\dfrac{15y^4}{5y^3}=\dfrac{3}{2x^2}\cdot3y=\dfrac{9y}{2x^2}\)

f: \(=\dfrac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}\cdot\dfrac{x+4}{2\left(x-2\right)}=\dfrac{x+2}{6}\)