\(^2\)- (15y-6x)\(^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2019

GIÚP MÌNH , MÌNH ĐANG VỘI LẮM 

19 tháng 3 2019

huhuhu#

23 tháng 1 2020

\(P=\left(2x-5y\right)^2-\left(15y-6x\right)^2-\left|xy-90\right|\)

\(\Leftrightarrow P=\left(2x-5y\right)^2-\left(6x-15y\right)^2-\left|xy-90\right|\)

\(\Leftrightarrow P=\left(2x-5y\right)^2-3\left(2x-3y\right)^2-\left|xy-90\right|\)

\(\Leftrightarrow P=\left(2x-5y\right)^2.\left(1-3\right)-\left|xy-90\right|\)

\(\Leftrightarrow P=-4\left(2x-5y\right)^2-\left|xy-90\right|\)

\(\Leftrightarrow P=-\left[4\left(2x-5y\right)^2-\left|xy-90\right|\right]\)

Ta có \(\hept{\begin{cases}\left(2x-5y\right)^2\ge0\\\left|xy-90\right|\ge0\end{cases}}\forall xy\)

\(\Rightarrow\hept{\begin{cases}4\left(2x-5y\right)^2\ge0\\\left|xy-90\right|\ge0\end{cases}}\forall xy\)

\(\Rightarrow P=-\left[4\left(2x-5y\right)^2+\left|xy-90\right|\right]\le0\forall xy\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}4\left(2x-5y\right)^2=0\\\left|xy-90\right|=0\end{cases}}\)

                      \(\Leftrightarrow\hept{\begin{cases}\left(2x-5y\right)^2=0\\xy-90=0\end{cases}}\)

                     \(\Leftrightarrow\hept{\begin{cases}2x-5y=0\\xy=90\end{cases}}\)

                     \(\Leftrightarrow\hept{\begin{cases}2x=5y\\xy=90\end{cases}}\)

               \(\Leftrightarrow2xy=5y^2\)\(\Leftrightarrow2.90=5y^2\Leftrightarrow5y^2=180\Leftrightarrow y^2=36\)

                                                                                                              \(\Rightarrow\orbr{\begin{cases}y=6\\y=-6\end{cases}}\Rightarrow\orbr{\begin{cases}x=90:6=15\\x=90:\left(-6\right)=-15\end{cases}}\)

Vậy \(P_{max}=0\Leftrightarrow x=15;y=6\)  hoặc x=-15; y=-6

Có 1 vài chỗ ko ok cho lắm bạn thông cảm

Học tốt

23 tháng 1 2020

Trả lời : 

Bn tham khảo link này :  

https://olm.vn/hoi-dap/detail/216085412740.html 

( Vào thống kê hỏi đáp của mk sẽ thấy ) 

12 tháng 12 2017

1/ \(A=3\left|2x-1\right|-5\)

Ta có: \(\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|-5\ge-5\)

Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất

Vậy \(Min_A=-5\)

12 tháng 3 2019

1) \(2x=3y=5z\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-2y}{15-2\cdot10}=\frac{x-2y}{-5}\)

*TH1: Nếu x-2y = 5

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{5}{-5}=-1\)

\(\Rightarrow\hept{\begin{cases}x=-15\\y=-10\\z=-6\end{cases}}\)\(\Rightarrow3x-2z=3\left(-15\right)-2\cdot6=-45-12=-57\)

*TH2: Nếu x-2y = -5

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=1\)\(\Rightarrow\hept{\begin{cases}x=15\\y=10\\z=6\end{cases}\Rightarrow3x-2z=3\cdot15-2\cdot6=45-12=33}\)

Vậy giá trị nhỏ nhất của 3x - 2z là -57.

2)\(B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\le1+\frac{12}{3}=5\)

Dấu "=" xảy ra khi x = 0.

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak