Tìm STN x,y để xy+x-y=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Tính nhanh
1 - 4 + 7 - 10 + 13 - 16 + ... + 97 - 100
= ( - 3 ) + ( - 3 ) + ... + ( - 3 )
= ( - 3 ) x 17
= -51
<=> y(x-1) + x-1 =0 <=> (y+1)(x-1)=0 do y thuộc N nên y+1> =>x=1
vậy (x;y)=(1;p) (trong đó p thuộc N)
a) Do x,y thuộc N nên x + 1; y - 2 thuộc Ư(3) = {1;3}
*) x + 1 = 1; y - 2 = 3 => x = 0; y = 5
*) x + 1 = 3; y - 2 = 1 => x = 2; y = 3
Vậy (x, y) = (0, 5); (2; 3)
b) Do x,y thuộc N nên 2x + 1, y + 2 thuộc Ư(4) = {1; 2; 4}
Vì 2x + 1 là lẻ nên 2x + 1 chỉ bằng 1 => y + 2 phải bằng 4
=> x = 0; y = 2
c) Do x,y thuộc N nên x + 1, xy - 2 thuộc Ư(5) = {1; 5}
*) x + 1 = 1 => x = 0
xy - 2 = 5 => xy = 7 mà x = 0 => loại
*) x + 1 = 5 => x = 4
xy - 2 = 1 => xy = 3 => 4y = 3 => y = 3/4 không phải stn => loại
=> Không có kết quả nào thỏa mãn
Câu a)
Bn lập các số có tích là 15 kể cả số âm luôn nhe rồi thế vào tìm x và y loại các trường hợp x và y ko thuộc N
Câu b)
Đang suy nghĩ ........
\(xy+x-y=x\left(y+1\right)-y=4\)
\(x\left(y+1\right)-y-1=3\)
\(x\left(y+1\right)-\left(y+1\right)=3\)
\(\left(x-1\right)\left(y+1\right)=3\)
\(=>\left[{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.=>\left[{}\begin{matrix}y+1=3\\y+1=-3\\y+1=1\\y+1=-1\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=2\\x=0\\x=4\\x=-2\end{matrix}\right.=>\left[{}\begin{matrix}y=2\\y=-4\\y=0\\y=-2\end{matrix}\right.\)
\(\text{x(y+1)-y=4}\)
\(\text{x(y+1)-y-1=3}\)
\(\text{x(y+1)-(y+1)=3}\)
\(\text{(x-1)(y+1)=3}\)
=> \(\left(x-1\right);\left(y+1\right)\in\left(Ư\right)3=\left\{1;3;-1;-3\right\}\)
==> bảng:
-2
=> (x;y) ∈ { (2;2);(4;0);(0;-4);(-2;-2)}