Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có : \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\)
\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{10}=\frac{z}{8}\)
Suy ra :\(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=k\Rightarrow x-15k;y=10k;z=8k\)
Ta có : \(4(15k)-3(10k)+5(8k)=7\)
\(\Rightarrow60k-30k+40k=7\)
\(\Rightarrow70k=7\). Suy ra \(k=\frac{1}{10}\)
Ta có : \(x=\frac{1}{10}\cdot15=\frac{3}{2}\)
\(y=\frac{1}{10}\cdot10=1\)
Mình chỉ giải có chừng này thôi
Câu b mk làm sau
\(xy+2x-y=7\)
\(xy+2x=7+y\)
\(x\left(y+2\right)=7+y\)
\(x=\frac{7+y}{y+2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\Rightarrow\frac{x+4}{6}=\frac{3y-1}{8}=\frac{3x-1-x-4}{8-6}=\frac{3y-x-5}{2}\)
Theo đề bài, ta có:
\(\Rightarrow\frac{3y-x-5}{x}=\frac{3y-x-5}{2}\Rightarrow x=2\)
\(\Rightarrow\frac{3y-1}{8}=\frac{x+4}{6}=\frac{2+4}{6}=1\Rightarrow3y-1=8\Rightarrow y=2\)
\(\Rightarrow\orbr{\begin{cases}x=2\\y=3\end{cases}}\)
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
Ta có : `2x=3y=>x/3 =y/2` và `x-y=6`
ADTC dãy tỉ số bằng nhau ta có :
`x/3=y/2 =(x-y)/(3-2)=6/1=6`
`=>x/3=6=>x=6.3=18`
`=>y/2=6=>y=6.2=12`
Vậy `x=18;y=12`
Ta có 2x = 3y
⇒ 2x - 3y = 0
2x - 2y - y = 0
2( x - y ) - y = 0
12 - y = 0
y = 12
Ta được 2x = 12 . 3 = 36 ⇒ x = 18
Vậy x = 18; y = 12
\(x=3y=2z\)
\(\Rightarrow\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)
\(\Rightarrow\frac{2x}{2}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{2-6+12}=\frac{48}{8}=6\)
Rồi thế vào là ra thôi :
\(\frac{2x}{2}=6\Rightarrow x=..........\)
Rồi tương tự thôi
6)
\(x=3y=2z\)
\(\Rightarrow\frac{x}{6}=\frac{y}{2}=\frac{z}{3}\)
\(\Rightarrow\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{12-6+12}=\frac{48}{18}=\frac{24}{9}\)
\(\Rightarrow\begin{cases}x=16\\y=\frac{16}{3}\\z=8\end{cases}\)
7)
\(2x=3y=-2z\)
\(\Rightarrow\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}=\frac{2x-3y-\left(-4z\right)}{1-1-2}=\frac{48}{-2}=-24\)
\(\Rightarrow\begin{cases}x=-12\\y=-8\\z=12\end{cases}\)