CHo tam giác đều ABC. Vẽ các tam giác đều ABD và ACE nằm ngoài tam giác ABC. Nối D với E. C/m tam giac AVDXCD deu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{DAC}=\widehat{DAB}+\widehat{BAC}=60^o+\widehat{BAC}\)
\(\widehat{BAE}=60^o+\widehat{BAC}\)
=> \(\widehat{DAC}=\widehat{BAE}\)
=> t/g DAC = t/g BAE (c.g.c)
=> \(\widehat{DCA}=\widehat{AEB}\) ; DC = BE
=> NC = ME
=> t/g ACN = t/g AEM (c.g.c)
=> \(\widehat{CAN}=\widehat{EAM}\) ; AN = AM (1)
=> \(\widehat{CAN}+\widehat{CAM}=\widehat{EAM}+\widehat{CAM}\)
=> \(\widehat{MAN}=\widehat{EAB}=60^o\) (2)
Từ (1( ; (2)
=> t/g AMN đều
Xét tứ giác ADFE có các cặp cạnh đối bằng nhau nên nó là hình bình hành. Vậy thì \(\widehat{FDA}=\widehat{FEA}\)
Suy ra \(\widehat{BDF}=\widehat{FDA}+60^o=\widehat{FEA}+60^o=\widehat{FEC}\)
Xét tam giác BDF và tam giác FEC có: BD = EF ; DF = EC; \(\widehat{BDF}=\widehat{FEC}\)
\(\Rightarrow\Delta BDF=\Delta FEC\left(c-g-c\right)\Rightarrow BF=CF\) . Vậy FBC là tam giác cân.
Ta thấy theo tính chất hình bình hành: \(\widehat{DFE}=180^o-\widehat{FEA}\) (1)
Lại có : \(\widehat{DFE}=\widehat{DFB}+\widehat{BFC}+\widehat{EFC}=\widehat{BFC}+\left(\widehat{DFB}+\widehat{EFC}\right)\)
\(=\widehat{BFC}+\left(\widehat{ECF}+\widehat{EFC}\right)\)
\(=\widehat{BFC}+\left(180^o-60^o-\widehat{FEA}\right)=\widehat{BFC}+120^o-\widehat{FEA}\) (2)
Từ (1) và (2) suy ra \(\widehat{BFC}=60^o\)
Suy ra FBC là tam giác đều.