Cho a >= 4 b >=4 CMR: a2 + b2 + ab >= 6( a + b )
Cho em ý kiến cả dấu = xảy ra khi nào naaaa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Áp dụng BĐT cô si cho 2 hai số dương \(a;b\) ta có:
\(a+b\ge2\sqrt{ab}\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{\sqrt{ab}}\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Dấu "=" xảy ra khi \(\Leftrightarrow a=b\)
b)
Đề: Cho a, b, c > 0 và abc = ab + bc + ca. Chứng minh rằng: \(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\le\frac{3}{16}\)
~ ~ ~ ~ ~
\(abc=ab+bc+ca\)
\(\Leftrightarrow1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Áp dụng BĐT \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\), ta có:
\(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\)
\(\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{2\left(b+c\right)}+\frac{1}{2\left(a+b\right)}+\frac{1}{b+c}+\frac{1}{2\left(a+c\right)}+\frac{1}{a+b}\right)\)
\(=\frac{1}{4}\left[\frac{3}{2\left(a+c\right)}+\frac{3}{2\left(b+c\right)}+\frac{3}{2\left(a+b\right)}\right]\)
\(=\frac{3}{8}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{a+b}\right)\)
\(\le\frac{3}{32}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\frac{3}{16}\) (đpcm)
Dấu "=" xảy ra khi a = b = c
\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)
Bình 2 vế của pt do 2 vế dương ta có:
\(\left(\sqrt{a}+\sqrt{b}\right)^2\ge\left(\sqrt{a+b}\right)^2\)
\(\Leftrightarrow a+b+2\sqrt{ab}\ge a+b\)
\(\Leftrightarrow2\sqrt{ab}\ge0\Leftrightarrow\sqrt{ab}\ge0\) (luôn đúng)
Tức ta có điều phải cm
B2: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=4\)
\(\Rightarrow\orbr{\begin{cases}a+b+c=2\\a+b+c=-2\end{cases}}\)
TH1: \(a+b+c=2\Rightarrow c=2-\left(a+b\right)\)
\(a^2+b^2+c^2=2\)\(\Leftrightarrow a^2+b^2+\left(2-a-b\right)^2=2\)
\(\Leftrightarrow a^2+b^2+ab-2\left(a+b\right)+1=0\)
\(\Leftrightarrow a^2+\left(b-2\right)a+b^2-2b+1=0\)
Xem đây là một phương trình bậc hai ẩn a, tham số b.
Để tồn tại a thỏa phương trình trên thì \(\Delta\ge0\)
\(\Leftrightarrow\left(b-2\right)^2-4\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow b\left(3b-4\right)\le0\)\(\Leftrightarrow0\le b\le\frac{4}{3}\)
Do vai trò của a, b, c là như nhau nên \(0\le a,b,c\le\frac{4}{3}\)
(hoặc đổi biến thành b và tham số a --> CM được a, rồi thay \(b=2-c-a\) sẽ chứng minh được c)
TH2: \(a+b+c=-2\) --> tương tự trường hợp 1 nhưng kết quả sẽ là
\(-\frac{4}{3}\le a,b,c\le0\)
Kết hợp 2 trường hợp lại, ta có đpcm.
câu a dễ mà mình học lớp 6 thôi
do a>0 , b> 0 nên a , b là số nguyên dương
=> để a.b=1
thì a=1
b=1
=>(1+1).(1+1)
= 2.2
=4
4 =4
=> (a+1).(b+1) \(\ge\)
bài 2 : đó là bất đẳng thức cô shi đó bạn dấu ''='' xảy ra khi a=b
Ta có: \(\left(a-4\right)\left(b-4\right)\ge0\Leftrightarrow ab+16\ge4\left(a+b\right)\)(1)
\(\left(a-4\right)\left(a+2\right)\ge0\Leftrightarrow a^2-2a-8\ge0\)
\(\left(b-4\right)\left(b+2\right)\ge0\Leftrightarrow b^2-2b-8\ge0\)
\(\Rightarrow a^2+b^2-16\ge2\left(a+b\right)\)(2)
Cộng (1) với (2) vế với vế ta có:
\(a^2+b^2+ab\ge6\left(a+b\right)\)
Dấu \(=\)xảy ra khi \(a=b=4\).