Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
Đề: Cho a, b, c > 0 và abc = ab + bc + ca. Chứng minh rằng: \(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\le\frac{3}{16}\)
~ ~ ~ ~ ~
\(abc=ab+bc+ca\)
\(\Leftrightarrow1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Áp dụng BĐT \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\), ta có:
\(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\)
\(\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{2\left(b+c\right)}+\frac{1}{2\left(a+b\right)}+\frac{1}{b+c}+\frac{1}{2\left(a+c\right)}+\frac{1}{a+b}\right)\)
\(=\frac{1}{4}\left[\frac{3}{2\left(a+c\right)}+\frac{3}{2\left(b+c\right)}+\frac{3}{2\left(a+b\right)}\right]\)
\(=\frac{3}{8}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{a+b}\right)\)
\(\le\frac{3}{32}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\frac{3}{16}\) (đpcm)
Dấu "=" xảy ra khi a = b = c
a) Áp dụng BĐT AM-GM ta có:
\(x+y\ge2\sqrt{xy}\)
\(\Rightarrow\)\(\frac{x+y}{2}\ge\sqrt{xy}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
b) Áp dụng BĐT AM-GM ta có:
\(\frac{\sqrt{x}}{\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{x}}\ge2\sqrt{\frac{\sqrt{x}}{\sqrt{y}}.\frac{\sqrt{y}}{\sqrt{x}}}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
Ta có: \(\left(a-4\right)\left(b-4\right)\ge0\Leftrightarrow ab+16\ge4\left(a+b\right)\)(1)
\(\left(a-4\right)\left(a+2\right)\ge0\Leftrightarrow a^2-2a-8\ge0\)
\(\left(b-4\right)\left(b+2\right)\ge0\Leftrightarrow b^2-2b-8\ge0\)
\(\Rightarrow a^2+b^2-16\ge2\left(a+b\right)\)(2)
Cộng (1) với (2) vế với vế ta có:
\(a^2+b^2+ab\ge6\left(a+b\right)\)
Dấu \(=\)xảy ra khi \(a=b=4\).
\(\frac{2ab}{\left(c+a\right)\left(c+b\right)}+\frac{2bc}{\left(a+b\right)\left(a+c\right)}+\frac{2ca}{\left(b+a\right)\left(b+c\right)}\ge\frac{3}{2}\) thì phải
Áp dụng cô-si cho ba dương ta có : \(x+y+z\ge3\sqrt[3]{xyz}\)
Suy ra : \(a^2b+ab^2+1-3ab\ge3\sqrt[3]{a^2b.ab^2.1}-3ab=3ab-3ab=0\)
Dấu bằng xảy ra khi \(a^2b=ab^2=1\Rightarrow a=b=1\)
Giả sử ab(\(a^2+b^2\))\(\le\)2 là đúng \(\Rightarrow\)ab((a+b)^2-2ab)-2\(\le\)0\(\Rightarrow\)ab(4-2ab)-2\(\ge\)0\(\Rightarrow\)4ab-2(ab)^2-2\(\le\)0\(\Rightarrow\)-2(a^2b^2-2ab+1)\(\le\)0\(\Rightarrow\)-2(ab-1)^2\(\le\)0( điều này luôn đúng với\(\forall\)a,b) , ta có ĐPCM
\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)
Bình 2 vế của pt do 2 vế dương ta có:
\(\left(\sqrt{a}+\sqrt{b}\right)^2\ge\left(\sqrt{a+b}\right)^2\)
\(\Leftrightarrow a+b+2\sqrt{ab}\ge a+b\)
\(\Leftrightarrow2\sqrt{ab}\ge0\Leftrightarrow\sqrt{ab}\ge0\) (luôn đúng)
Tức ta có điều phải cm