K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2017

\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)

Bình 2 vế của pt do 2 vế dương ta có:

\(\left(\sqrt{a}+\sqrt{b}\right)^2\ge\left(\sqrt{a+b}\right)^2\)

\(\Leftrightarrow a+b+2\sqrt{ab}\ge a+b\)

\(\Leftrightarrow2\sqrt{ab}\ge0\Leftrightarrow\sqrt{ab}\ge0\) (luôn đúng)

Tức ta có điều phải cm

2 tháng 8 2017

b)

Đề: Cho a, b, c > 0 và abc = ab + bc + ca. Chứng minh rằng: \(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\le\frac{3}{16}\)

~ ~ ~ ~ ~

\(abc=ab+bc+ca\)

\(\Leftrightarrow1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Áp dụng BĐT \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\), ta có:

\(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\)

\(\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{2\left(b+c\right)}+\frac{1}{2\left(a+b\right)}+\frac{1}{b+c}+\frac{1}{2\left(a+c\right)}+\frac{1}{a+b}\right)\)

\(=\frac{1}{4}\left[\frac{3}{2\left(a+c\right)}+\frac{3}{2\left(b+c\right)}+\frac{3}{2\left(a+b\right)}\right]\)

\(=\frac{3}{8}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{a+b}\right)\)

\(\le\frac{3}{32}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\frac{3}{16}\) (đpcm)

Dấu "=" xảy ra khi a = b = c 

10 tháng 7 2018

a) Áp dụng BĐT AM-GM ta có:

        \(x+y\ge2\sqrt{xy}\)

\(\Rightarrow\)\(\frac{x+y}{2}\ge\sqrt{xy}\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(x=y\)

b)  Áp dụng BĐT AM-GM ta có:

    \(\frac{\sqrt{x}}{\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{x}}\ge2\sqrt{\frac{\sqrt{x}}{\sqrt{y}}.\frac{\sqrt{y}}{\sqrt{x}}}=2\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(x=y\)

DD
25 tháng 1 2022

Ta có: \(\left(a-4\right)\left(b-4\right)\ge0\Leftrightarrow ab+16\ge4\left(a+b\right)\)(1)

\(\left(a-4\right)\left(a+2\right)\ge0\Leftrightarrow a^2-2a-8\ge0\)

\(\left(b-4\right)\left(b+2\right)\ge0\Leftrightarrow b^2-2b-8\ge0\)

\(\Rightarrow a^2+b^2-16\ge2\left(a+b\right)\)(2)

Cộng (1) với (2) vế với vế ta có: 

\(a^2+b^2+ab\ge6\left(a+b\right)\)

Dấu \(=\)xảy ra khi \(a=b=4\).

11 tháng 12 2015

\(\frac{2ab}{\left(c+a\right)\left(c+b\right)}+\frac{2bc}{\left(a+b\right)\left(a+c\right)}+\frac{2ca}{\left(b+a\right)\left(b+c\right)}\ge\frac{3}{2}\) thì phải

30 tháng 5 2016

Áp dụng cô-si cho ba dương ta có : \(x+y+z\ge3\sqrt[3]{xyz}\)

Suy ra : \(a^2b+ab^2+1-3ab\ge3\sqrt[3]{a^2b.ab^2.1}-3ab=3ab-3ab=0\)

Dấu bằng xảy ra khi \(a^2b=ab^2=1\Rightarrow a=b=1\)

18 tháng 8 2017

Giả sử ab(\(a^2+b^2\))\(\le\)2 là đúng \(\Rightarrow\)ab((a+b)^2-2ab)-2\(\le\)0\(\Rightarrow\)ab(4-2ab)-2\(\ge\)0\(\Rightarrow\)4ab-2(ab)^2-2\(\le\)0\(\Rightarrow\)-2(a^2b^2-2ab+1)\(\le\)0\(\Rightarrow\)-2(ab-1)^2\(\le\)0( điều này luôn đúng với\(\forall\)a,b) , ta có ĐPCM

3 tháng 12 2018

sai đề

1 tháng 6 2017

Sao khó vậy???mk mới lớp 6 thôi!!!

23 tháng 10 2016

THCS pt

23 tháng 10 2016

làm đk chưa Bách Tễu?