Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(a-b\right)^2\ge0\)
=>\(a^2+b^2-2ab\ge0\left(đpcm\right)\)
b) \(\left(a+b\right)^2\ge0\)
=> \(a^2+b^2+2ab\ge0\)
<=> \(a^2+b^2\ge-2ab\)
<=> \(\dfrac{a^2+b^2}{2}\ge ab\) (đpcm)
c) ta có: \(\left(a+1\right)^2=a^2+2a+1\)
\(a\left(a+2\right)=a^2+2a\)
Vậy từ 2 điều trên => \(a\left(a+2\right)< \left(a+1\right)^2\)
d) \(m^2+n^2+2\ge2\left(m+n\right)\) (*)
<=>m2 - 2m +1 +n2 - 2n +1 \(\ge0\)
<=> \(\left(m-1\right)^2+\left(n-1\right)^2\ge0\) (1)
(1) đúng => (*) đúng
d) Bạn ấy giải rồi ,mình không giải nữa
e) Theo BĐT cauchy ta có: \(\dfrac{a^2+b^2}{2}\ge ab\Rightarrow\dfrac{a^2+b^2}{ab}\ge2\)
\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\Leftrightarrow\left(\dfrac{a}{b}+1\right)+\left(\dfrac{b}{a}+1\right)\ge4\)
\(\Leftrightarrow\dfrac{a+b}{b}+\dfrac{a+b}{a}\ge4\)
\(\Rightarrow\left(a+b\right)\left(\dfrac{1}{b}+\dfrac{1}{a}\right)\ge4\) (đpcm)
Vậy..........
e)\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(=1+\frac{b}{a}+\frac{a}{b}+1\)
\(=\left(1+1\right)+\left(\frac{a}{b}+\frac{b}{a}\right)\)
\(=2+\left(\frac{a.a}{b.a}+\frac{b.b}{a.b}\right)\)
\(=2+\frac{a.a+b.b}{b.a}\)
Vì \(\frac{a.a+b.b}{a.b}>=2\)
Nên \(2+\frac{a.a+b.b}{a.b}>=2+2=4\)
Hay \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)>=4\)
a) \(a^2+b^2-2ab\)
\(=\left(a-b\right)^2\)
Vì \(\left(a-b\right)^2\) là binh phương của một số nên \(\left(a-b\right)^2>=0\)
Hay \(a^2+b^2-2ab>=0\)
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
a , sai đề thì phải @@
b, \(\frac{a^2+b^2}{2}\ge ab< =>a^2+b^2\ge2ab< =>\left(a-b\right)^2\ge0\)*đúng*
c, \(\left(a+1\right)^2>a\left(a+2\right)< =>a^2+2a+1>a^2+2a< =>1>0\)*đúng*
d, Áp dụng BĐT Cauchy cho 2 số :
\(m^2+1\ge2m\)
\(n^2+1\ge2n\)
Cộng theo vế ta có điều phải chứng minh
e, Áp dụng BĐT Cauchy cho 2 số không âm ta có :
\(a+b\ge2\sqrt{ab}\)
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)
Nhân theo vế các BĐT cùng chiều ta được :
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4\)
Dấu "=" xảy ra khi và chỉ khi \(a=b\)
Vậy ta có điều phải chứng minh
5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)
áp dụng bđ cosy
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)
=> đpcm
6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
hay với mọi x thuộc R đều là nghiệm của bpt
7.áp dụng bđt cosy
\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)
1/ \(a^2-b^2+c^2\ge\left(a-b+c\right)^2\)
\(\Leftrightarrow bc-ac-b^2+ab\ge0\)
\(\Leftrightarrow\left(bc-ac\right)+\left(ab-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\ge0\)(đúng)
Vì \(\hept{\begin{cases}a\ge b\\b\ge c\end{cases}}\)
2/ \(a^2-b^2+c^2-d^2\ge\left(a-b+c-d\right)^2\)
\(\Leftrightarrow-d^2+cd-bd+ad+bc-ac-b^2+ab\ge0\)
\(\Leftrightarrow\left(dc-d^2\right)+\left(ad-bd\right)+\left(bc-ac\right)+\left(ba-b^2\right)\ge0\)
\(\Leftrightarrow d\left(c-d\right)+d\left(a-b\right)+\left(a-b\right)\left(b-c\right)\ge0\)
Đúng vì \(a\ge b\ge c\ge d\ge0\)
câu a dễ mà mình học lớp 6 thôi
do a>0 , b> 0 nên a , b là số nguyên dương
=> để a.b=1
thì a=1
b=1
=>(1+1).(1+1)
= 2.2
=4
4 =4
=> (a+1).(b+1) \(\ge\)
bài 2 : đó là bất đẳng thức cô shi đó bạn dấu ''='' xảy ra khi a=b