K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2022

\(Q-P=3x^3-3x^2+8x-5-5x^2+3x-2\)

\(Q-P=3x^3+\left(-3x^2-5x^2\right)+\left(8x+3x\right)+\left(-5-2\right)\)

\(Q-P=3x^3-8x^2+11x-7\)

29 tháng 3 2022

cho ít thôi

3 tháng 4 2022

dễ mờ

22 tháng 3 2022

P - Q = 3x^3 - 3x^2 + 8x - 5-( 5x^2 - 3x + 2)

= 3x3-3x2+8x-5-5x2y+3x-2

=3x3-3x2+(8x+3x)-5x2y-7

                    

10 tháng 10 2017

******************************************************

a) \(x^3-5x^2+8x-4=x^3-x^2-4x^2+4x+4x-4\)

\(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)

b) \(x^3-3x+2=x^3+2x^2-2x^2-4x+x+2\)

\(=x^2\left(x+2\right)-2x\left(x+2\right)+\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-2x+1\right)=\left(x+2\right)\left(x-1\right)^2\)

c) \(x^3-5x^2+3x+9=x^3+x^2-6x^2-6x+9x+9\)

\(=x^2\left(x+1\right)-6x\left(x+1\right)+9\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-6x+9\right)=\left(x+1\right)\left(x-3\right)^2\)

d) \(x^3+8x^2+17x+10=x^3+2x^2+6x^2+12x+5x+10\)

\(=x^2\left(x+2\right)+6x\left(x+2\right)+5\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+6x+5\right)=\left(x+2\right)\left(x+5\right)\left(x+1\right)\)

e) \(x^3+3x^2+6x+4=x^3+x^2+2x^2+2x+4x+4\)

\(=x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+2x+4\right)\)

f) \(x^3+3x^2+3x+2=x^3+2x^2+x^2+2x+x+2\)

\(=x^2\left(x+2\right)+x\left(x+2\right)+\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+x+1\right)\)

24 tháng 2 2017

học hệ số bất định chưa z?

25 tháng 2 2017

thôi mình cứ làm đi,để cho mình ôn lại kiến và giúp bạn ấy học nữa .vui

`P(x)=`\( 2x^4 + 3x^3 + 3x^2 - x^4 - 4x + 2 - 2x^2 + 6x\)

`= (2x^4-x^4)+3x^3+(3x^2-2x^2)+(-4x+6x)+2`

`= x^4+3x^3+x^2+2x+2`

 

`Q(x)=`\(x^4 + 3x^2 + 5x - 1 - x^2 - 3x + 2 + x^3\)

`= x^4+x^3+(3x^2-x^2)+(5x-3x)+(-1+2)`

`= x^4+x^3+2x^2+2x+1`

 

`P(x)+Q(x)=(x^4+3x^3+x^2+2x+2)+(x^4+x^3+2x^2+2x+1)`

`=x^4+3x^3+x^2+2x+2+x^4+x^3+2x^2+2x+1`

`=(x^4+x^4)+(3x^3+x^3)+(x^2+2x^2)+(2x+2x)+(2+1)`

`= 2x^4+4x^3+3x^2+4x+3`

`@`\(\text{dn inactive.}\)

P(x)=x^4+3x^3+x^2+2x+2

Q(x)=x^4+x^3+2x^2+2x+1

P(x)+Q(x)=2x^4+4x^3+3x^2+4x+3

`@` `\text {Ans}`

`\downarrow`

`a)`

`P(x) =`\(3x^2+7+2x^4-3x^2-4-5x+2x^3\)

`= (3x^2 - 3x^2) + 2x^4 + 2x^3 - 5x + (7-4)`

`= 2x^4 + 2x^3 - 5x + 3`

`Q(x) =`\(3x^3+2x^2-x^4+x+x^3+4x-2+5x^4\)

`= (5x^4 - x^4) + (3x^3 + x^3) + 2x^2 + (x + 4x)- 2`

`= 4x^4 + 4x^3 + 2x^2 + 5x - 2`

`b)`

`P(-1) = 2*(-1)^4 + 2*(-1)^3 - 5*(-1) + 3`

`= 2*1 + 2*(-1) + 5 + 3`

`= 2 - 2 + 5 + 3`

`= 8`

___

`Q(0) = 4*0^4 + 4*0^3 + 2*0^2 + 5*0 - 2`

`= 4*0 + 4*0 + 2*0 + 5*0 - 2`

`= -2`

`c)`

`G(x) = P(x) + Q(x)`

`=> G(x) = 2x^4 + 2x^3 - 5x + 3 + 4x^4 + 4x^3 + 2x^2 + 5x - 2`

`= (2x^4 + 4x^4) + (2x^3 + 4x^3) + 2x^2 + (-5x + 5x) + (3 - 2)`

`= 6x^4 + 6x^3 + 2x^2 + 1`

`d)`

`G(x) = 6x^4 + 6x^3 + 2x^2 + 1`

Vì `x^4 \ge 0 AA x`

    `x^2 \ge 0 AA x`

`=> 6x^4 + 2x^2 \ge 0 AA x`

`=> 6x^4 + 6x^3 + 2x^2 + 1 \ge 0`

`=> G(x)` luôn dương `AA` `x`

Bài cuối mình không chắc c ạ ;-;

`1)` Yêu cầu là gì ạ?

`2)`

`P(x)-Q(x)=`\((6x^3-3x^2+5x-1)-(-6x^3+3x^2-2x+7)\)

`= 6x^3-3x^2+5x-1+6x^3-3x^2+2x-7`

`= (6x^3+6x^3)+(-3x^2-3x^2)+(5x+2x)+(-1-7)`

`= 12x^3-6x^2+7x-8`

`3)`

`(-3x^3+15x^2+81x):(-3x)`

`= (-3x^3) \div (-3x) + 15x^2 \div (-3x) + 81x \div (-3x)`

`= x^2-5x-27`

2 tháng 5 2023

1)....

mình làm rồi nên để vậy để đánh dấu thôi