So sánh:
A=9^2013+1/9^2014+1 và B=9^2014+1/9^2015+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2015}{2014}>\frac{2014}{2013}\)
\(\frac{2015}{2017}>\frac{2011}{2013}\)
a)\(\frac{2015}{2014}>\frac{2014}{2013}\)
b)\(\frac{2015}{2017}>\frac{2011}{2013}\)
a: =>\(\left(\dfrac{2x+1}{9}+1\right)+\left(\dfrac{2x+2}{8}+1\right)+...+\left(\dfrac{2x+9}{1}+1\right)=0\)
=>2x+10=0
=>x=-5
b: \(\Leftrightarrow\left(\dfrac{x-1}{2015}-1\right)+\left(\dfrac{x-2}{2014}-1\right)+...+\left(\dfrac{x-2014}{2}-1\right)+\left(x-2016\right)=0\)
=>x-2016=0
=>x=2016
A = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... + 2005 + 2006 - 2007 - 2008 + 2009 + 2010 ( có 2010 số )
A = ( 1 + 2 - 3 - 4 ) + ( 5 + 6 - 7 - 8 ) + .... + ( 2005 + 2006 - 2007 - 2008 ) + ( 2009 + 2010 )
A = ( - 4 ) + ( - 4 ) + ... + ( - 4 ) + 4019 ( có 503 số )
A = ( - 4 ) . 502 + 4019
A = - 2008 + 4019
A = 2011.
CHÚC LÀM BÀI VUI VẺ
\(9A=\frac{9\left(9^{2014}+1\right)}{9^{2015+1}}=\frac{9^{2015}+9}{9^{2015}+1}=\frac{9^{2015}+1+8}{9^{2015}+1}=1+\frac{8}{9^{2015}+1}\)
\(9B=\frac{9\left(9^{2015}+1\right)}{9^{2016+1}}=\frac{9^{2016}+9}{9^{2016}+1}=\frac{9^{2016}+1+8}{9^{2016}+1}=1+\frac{8}{9^{2016}+1}\)
Ta thấy \(9^{2016}+1>9^{2015}+1\Rightarrow\frac{8}{9^{2016}+1}<\frac{8}{9^{2015}+1}\)
suy ra 9A >9B
Vậy A > B
nghĩ đi nhé , giải ra thì k còn thú vị nữa , ^_^ còn k thì 15 ' sau pm mình giải cho
a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)
b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)
Ta có:
A=92013+1/92014+1
9A=92014+9/92014+1
=(92014+1/92014+1)+(8/92014+1)
=1+8/92014+1
B=92014+1/92015+1
9B=92015+9/92015+1
=(92015+1/92015+1)+(8/92015+1)
=1+8/92015+1
Vì 8/92014+1 > 8/92015+1 nên A>B
**** bạn