Cho x> 0 và x# 4, GTNN của biểu thức \(P=\frac{x^2-8\sqrt{x}}{x+2\sqrt{x}+4}-\frac{x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-4\right)}{\sqrt{x}-2}\)bằng \(\frac{a}{b}\)(với a, b là các số nguyên dương và \(\frac{a}{b}\) là phân số tối giản. Tính a+b?
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
HB
1
4 tháng 2 2021
Có 3 trường hợp:
TH1: x=0 thì x2=0.
TH2: x< 0 thì x2=0
TH3: x>0 thì x2>0
NT
1
5 tháng 1
a: \(18=3^2\cdot2;36=3^2\cdot2^2\)
=>\(BCNN\left(18;36\right)=3^2\cdot2^2=36\)
\(x⋮18;x⋮36\)
=>\(x\in BC\left(18;36\right)\)
=>\(x\in B\left(36\right)\)
mà x là số nhỏ nhất khác 0
nên x=36
b: \(25=5^2;45=5\cdot3^2\)
=>\(ƯCLN\left(25;45\right)=5\)
\(25⋮x;45⋮x\)
=>\(x\inƯC\left(25;45\right)\)
mà x là số lớn nhất khác 0
nên x=ƯCLN(25;45)
=>x=5
MN
25 tháng 1 2017
{ 1;2;4;8}
{-1;-2;-3;-4;-6;-12}
{-1;-2;-4;1;2;4}
{-18;-12}
{-36;36}
Lời giải:
Ta có:
\(P=\frac{\sqrt{x}(\sqrt{x^3}-8)}{x+2\sqrt{x}+4}-\frac{\sqrt{x}(\sqrt{x}+1)}{\sqrt{x}}+\frac{2(\sqrt{x}-2)(\sqrt{x}+2)}{\sqrt{x}-2}\)
\(=\frac{\sqrt{x}(\sqrt{x}-2)(x+2\sqrt{x}+4)}{x+2\sqrt{x}+4}-\frac{\sqrt{x}(\sqrt{x}+1)}{\sqrt{x}}+\frac{2(\sqrt{x}-2)(\sqrt{x}+2)}{\sqrt{x}-2}=\sqrt{x}(\sqrt{x}-2)-(\sqrt{x}+1)+2(\sqrt{x}+2)\)
\(=x-2\sqrt{x}-\sqrt{x}-1+2\sqrt{x}+4=x-\sqrt{x}+3\)
$=(\sqrt{x}-\frac{1}{2})^2+\frac{11}{4}\geq \frac{11}{4}$ với mọi $x>0; x\neq 4$
$\Rightarrow \frac{a}{b}=\frac{11}{4}$
Vì $a,b$ nguyên dương và $\frac{a}{b}$ tối giản nên $a=11; b=4$
$\Rightarrow a+b=11+4=15$