B=22+42+62+...+(2n)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(B=(1.2)^2+(2.2)^2+(3.2)^2+...+(10.2)^2\)
\(=2^2.1^2+2^2.2^2+2^2.3^2+...+2^2.10^2=2^2(1^2+2^2+...+10^2)\)
\(=4A=4.385=1540\)
\(B=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)
\(B=\dfrac{1}{2.2}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}\)
\(B=\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{100}\)
\(B=0+0+...+0\)
\(B=0\)
B=221+421+621+...+10021
�=12.2+14.4+...+1100.100B=2.21+4.41+...+100.1001
�=12−12+14−14+...+1100−1100B=21−21+41−41+...+1001−1001
�=0+0+...+0B=0+0+...+0
�=0B=0
tick cái
Lời giải:
Gọi vế trái là $A$
$2A=\frac{2}{2^2}+\frac{2}{4^2}+\frac{2}{6^2}+...+\frac{2}{2022^2}$
Xét số hạng tổng quát:
$\frac{2}{n^2}$. Ta sẽ cm $\frac{2}{n^2}< \frac{1}{(n-1)n}+\frac{1}{n(n+1)}(*)$
$\Leftrightarrow \frac{2}{n^2}< \frac{n+1+n-1}{n(n-1)(n+1)}$
$\Leftrightarrow \frac{2}{n^2}< \frac{2}{(n-1)(n+1)}$
$\Leftrightarrow \frac{2}{n^2}< \frac{2}{n^2-1}$ (luôn đúng)
Thay $n=2,4,...., 2022$ vào $(*)$ ta có:
$\frac{2}{2^2}< \frac{1}{1.2}+\frac{1}{2.3}$
$\frac{2}{4^2}< \frac{1}{3.4}+\frac{1}{4.5}$
.......
Suy ra: $2A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2022.2023}$
$2A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2022}-\frac{1}{2023}$
$2A< 1-\frac{1}{2023}< 1$
$\Rightarrow A< \frac{1}{2}$
\(2^2+4^2+6^2+....+20^2\)
\(=2^2.1^2+2^2.2^2+2^2.3^2+...+2^2.10^2\)
\(=2^2\left(1^2+2^2+3^2+...10^2\right)\)
\(=2^2.385=1540\)
Ta có \(2^2+4^2+...+20^2=2^2\left(1^2+2^2+...+10^2\right)=2^2.385=1540\).
2² + 4² + 6² + ... + 16² + 18²
= 4.(1 + 2² + 3² + ... + 8² + 9²)
= 4.285
= 1140