Cho a,b,c,d khác 0. Từ tỉ lệ thức a/b=c/d hãy suy ra tỉ lệ thức a-b/a=c-d/c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dya4 tỉ số bằng nhau:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\Rightarrow\frac{a-b}{a}=\frac{c-d}{c}\left(đpcm\right)\)
ab =cd
⇒ac =bd
Áp dụng tính chất dãy tỉ số bằng nhau:
ac =bd =a−bc−d
⇒ac =a−bc−d ⇒a−ba =c−dc (đpcm)
d) a/b = c/d => ad = bc => b/a = d/c
=>b/a - 1 = d/c - 1
b/a - a/a = d/c - c/c
(b - a)/b = (d - c)/c
ta có :\(\frac{a}{b}=\frac{c}{d}->\frac{a}{c}=\frac{b}{d}\)
áp dụng t/c của dãy t/s = nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}->\frac{a}{c}=\frac{a+c}{b+d}=\frac{a}{a+b}=\frac{c}{c+d}\left(dpcm\right)\)
Ta có a/b = c/d suy ra a/b = b/d
Áp dụng tính chất dãy tính chất tỉ số = nhau
a/c = b/d = a + b / c + d = a-b/c-d suy ra a+b / c-d = c+d/c-d.
**** MÌNH NHA BẠN.
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\Rightarrow\frac{c-d}{c}=\frac{a-b}{a}\)
đặt x/2=y/5=k
=> x=2k, y=5k
ta có: 5kx2k=10
=> 10k^2=10
=> k^2=1
=> k=±1
với k=1=> x=2x1=2 ; y=1x5=5
với k=-1=> x=-1x2=-2 ; y=-1x5=-5
\(\frac{x}{2}=\frac{y}{5}\Rightarrow5x=2y\)(1)
=>5x-2y=0
=>-(2y-5x)=0
=>2y-5x=0 (1)
xy=10 (2)
=>ta có:\(\int^{2y-5x=0}_{xy=10}\)
giải ra ta đc:x=±2;y=±5
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(đpcm)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\left(a+b\right)\left(c-d\right)=\left(a-b\right)\left(c+d\right)\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(điều phải chứng minh)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
=>\(\frac{a}{c}=\frac{a-b}{c-d}\Rightarrow\frac{a-b}{a}=\frac{c-d}{c}\)
Vậy ta có đpcm
có \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
=> \(\frac{a}{c}=\frac{a-b}{c-d}=>\frac{c-d}{c}=\frac{a-b}{a}\)