S=1 + 4 + 42 + 43 + ... + 4100. Tìm số dư của phép chia khi S chia cho 21?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sử dụng đồng dư thức em nhé.
S = 12008 + 22008 + 32008 + 42008
S = 1 + (25)401.23 + (35)401.33 + (45)401.43
S = 1 + 32401. 8 + 243401. 27 + 1024401. 64
32 \(\equiv\) -1 (mod 11) ⇒32401.8 \(\equiv\) -8 (mod 11) (1)
243 \(\equiv\) 1 (mod 11); 27 \(\equiv\) 5 (mod 11) \(\Rightarrow\) 243401.27 \(\equiv\) 5 (mod 11) (2)
1024 \(\equiv\) 1 (mod 11); 64 \(\equiv\) 9 (mod 11) \(\Rightarrow\) 1024401.64 \(\equiv\) 9 (mod 11) (3)
Kết hợp (1); (2); (3) ta có:
S \(\equiv\) 1 - 8 + 5 + 9 (mod 11)
S \(\equiv\) 7 (mod 11)
Vậy S khi chia 11 dư 7
Bài 1:
\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)
Bài 2:
\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)
Bài 1 :
\(2^{49}=\left(2^7\right)^7=128^7\)
\(5^{21}=\left(5^3\right)^7=125^7\)
mà \(125^7< 128^7\)
\(\Rightarrow2^{49}>5^{21}\)
Bài 2 :
a) \(S=1+3+3^2+3^3+...3^{99}\)
\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)
\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)
\(\Rightarrow dpcm\)
b) \(S=1+4+4^2+4^3+...4^{62}\)
\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)
\(\Rightarrow S=21+4^3.21+...4^{60}.21\)
\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)
\(\Rightarrow dpcm\)
Coi số dư của phép chia trên là số dư lớn nhất có thể. Vậy số chia là:
49 + 1 = 50
Số bị chia là:
50.80+49 = 4049
Đ/s:.......
a) \(7.8.9.10⋮2,⋮5\)
\(2.3.4.5.6⋮2,⋮5\)
31 ko chia hết 2, ko chia hết 5
=> 7.8.9.10 + 2.3.4.5.6 + 31 ko chia hết 2, không chia hết 5
b) 1.3.5.7.9 \(⋮\)5, ko chia hết 2
4100 \(⋮\)5 , \(⋮\)2
=> 1.3.5.7.9 + 4100 \(⋮\)5, ko chia hết 2
ta có : \(13\text{ chia 4 dư 1 nên }13^{16}=4k+1\text{ nên}\)
\(3^{13^{14}}=3^{4k+1}=3.81^k\text{ mà 81 chia 16 dư 1 nên : }3.81^k\text{ chia 16 dư 3}\)
vậy \(3^{13^{16}}\text{ chia 16 dư 3}\)
b.\(20\text{ chia 3 dư 2 nên }20^{21}\text{ chia 3 dư 2 nên : }20^{21}=3k+2\)
\(\Rightarrow4^{20^{21}}=4^{3k+2}=16\times64^k\)
mà \(64^k\text{ chia 21 dư 1 nên }4^{20^{21}}\text{ chia 21 dư 16}\)
Lời giải:
$S=1+4+(4^2+4^3+4^4)+(4^5+4^6+4^7)+....+(4^{98}+4^{99}+4^{100})$
$=5+4^2(1+4+4^2)+4^5(1+4+4^2)+...+4^{98}(1+4+4^2)$
$=5+(1+4+4^2)(4^2+4^5+....+4^{98})$
$=5+21(4^2+4^5+...+4^{98})$
$\Rightarrow S$ chia $21$ dư $5$