K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2022

a, Xét tg ABD và tg EBD, có: 

góc A= góc E(=90o)

BD chung.

góc ABD= góc DBE(tia phân giác)

=>tg ABD=tg EBD.(ch-gn)

b, Ta có: ^A+^B+^C=180o(Đ. L. tổng 3 góc của tg).

=>^B=180o-(^A+^B)=180o-(90o+30o)

=> góc B=60o.

=> góc ABD= góc DBE= 60o: 2=30o

=>góc DBE= góc C.

=>tg DBC cân tại D.

18 tháng 3 2022

câu c mik chx làm đc:(

Bổ sung đề: \(\widehat{ABC}=60^0\)

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)

b) Ta có: ΔABD=ΔEBD(cmt)

nên BA=BE(hai cạnh tương ứng)

Xét ΔABE có BA=BE(cmt)

nên ΔBAE cân tại B(Định nghĩa tam giác cân)

Xét ΔABE cân tại B có \(\widehat{ABE}=60^0\)(gt)

nên ΔABE đều(Dấu hiệu nhận biết tam giác đều)

c) Xét ΔABC vuông tại A có 

\(\cos\widehat{B}=\dfrac{AB}{BC}\)

\(\Leftrightarrow BC=\dfrac{AB}{\cos60^0}=\dfrac{5}{\dfrac{1}{2}}=10\left(cm\right)\)

Vậy: BC=10cm

Có ai biết ko chỉ mình với ạ

 

18 tháng 3 2022

Bài 1:

a, Xét tg ABD và tg EBD, có: 

góc A= góc E(90o)

BD chung

góc ABD= góc DBE(tia phân giác)

=>tg ABD= tg EBD.

b, Ta có: tg ABD= tg DBE(cm câu a)

=>AB=BE(2 cạnh tương ứng)

=>tg ABE cân tại B.

Mà tg cân ABE có góc B=60o, nên tg ABE là tg đều.

c, Ta có: góc A+ góc B+góc C=180o(ĐL tổng 3 góc của tg)

=>góc B=180o-(góc A+ góc C)=180o-(90o+60o)=30o

Vì tg ABE là tg đều, nên góc A=60o.

Ta có: góc A=góc BAE+ góc AEC.

=>90o=60o+ góc AEC=30o.

=> góc AEC= góc C(=30o)

=>tg AEC cân tại E.

=>AE=EC.

Mà AE=5cm(tg đều), nên EC=5cm.

Vậy, độ dài cạnh BC là: 

BE+EC=5+5=10.

=>BC= 10cm.

 

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

b: Ta có: ΔBAD=ΔBED

=>BA=BE

Xét ΔABE có BA=BE và \(\widehat{ABE}=60^0\)

nên ΔABE đều

c: Xét ΔABC vuông tại A có \(cosABC=\dfrac{AB}{BC}\)

=>\(\dfrac{5}{BC}=cos60=\dfrac{1}{2}\)

=>\(BC=5\cdot2=10\left(cm\right)\)

23 tháng 3 2022

Tham khảo:

a) Xét 2 tam giác ABD và EBD có 

BD cạnh chung

góc ABD = góc EBD ( gt )

-> = nhau ( ch-gn)

b) Vì tam giác ABD = tam giác EBD 

=> AB = EB ( 2 cạnh t/ứng )

=> t/giác ABE cân tại A 

Mà ABE = 60 độ ( gt )

=> Tam giác ABE đều

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có

BE=BA

góc FBE chung

=>ΔBEF=ΔBAC

=>BF=BC

c: ΔBFC cân tại B

mà BD là phân giác

nên BD vuông góc CF

=>BD//AH

=>AH vuông góc AE

a: XétΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó:ΔABD=ΔEBD

b: ta có: ΔABD=ΔEBD

nên BA=BE

=>ΔBAE cân tại B

mà \(\widehat{ABE}=60^0\)

nên ΔBAE đều

9 tháng 5 2022

a)  Xét ∆ABD và ∆EBD ta có :

BD chung

góc BAD = góc BED ( = 90 độ)

góc ABD = góc EBD ( gt)

=> ∆ABD=∆EBD  ( ch-gn)

b) Xét tam giác vuông ABC ta có :

Góc A = 90 độ, góc C = 30 độ

Mà góc A + góc C + góc B = 180 độ

=> góc B = 180 - 90 - 30 = 60 độ (1)

Xét tam giác ABE ta có :

BA = BE ( vì  ∆ABD=∆EBD) => tam giác ABE cân tại B

Mà góc B = 60 độ => Tam giác ABE là tam giác đều ( trong tam giác cân, một góc = 60 độ thì tam giác đó là tam giác đều )

 

a)  Xét `∆ABD` và `∆EBD` ta có :

`BD` chung

`hat (BAD) = hat (BED) ( = 90^o)`

`hat(ABD) = hat (EBD)`

`=> ∆ABD=∆EBD  ( ch-gn)`

b) Xét tam giác vuông `ABC` ta có :

`Hat A = 90 độ, hatC = 30 độ`

Mà `hat (A) + hat (C) + hat (B) = 180^o`

`=> hat(B) = 180 - 90 - 30 = 60 độ (1)`

Xét tam giác ABE ta có :

`BA = BE ( vì  ∆ABD=∆EBD) =>` ` triangle ABE `cân tại B

Mà `hat(B)= 60 độ => triangle ABC` là tam giác đều

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: Xét ΔBAE có BA=BE và góc ABE=60 độ

nên ΔBAE đều

c: Xét ΔDBC có góc DBC=góc DCB

nên ΔDBC cân tại D