K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2015

Gọi U là UCLN của (14n+3) và (21n+4) 
Để phân số (14*n+3)/(21*n+4) tối giản thì U=1. 
ta có: 
14n+3 chia hết cho U và 21n+4 chia hết cho U 
=> 3(14n+3) chia hết cho U và 2(21n+4) chia hết cho U 
=> 3(14n+3)-2(21n+4) chia hết cho U 
=> 1 chia hết cho U 
=> u=+-1 
Vậy UCLN của (14n+3) và (21n+4) là 1, 
hay phân số (14*n+3) / (21*n+4) tối giản

1 tháng 5 2015

Gọi d là UC(30 x n + 2;12 x n + 1)
Ta có: 30 x n + 2 = 2.(30 x n + 2) = 60 x n + 4
12 x n + 1 = 5.(12 x n + 1) = 60 x n + 5
Vì d là UC(30 x n + 2;12 x n + 1) nên 
=> 60 x n + 4 chia hết cho d
=> 60 x n + 5 chia hết cho d
=> (60 x n + 5) - (60 x n + 4) chia hết cho d
=> 1 chia hết cho d
=> d = +1
Vậy p/s \(\frac{30.n+2}{12.n+1}\) là p/s tối giản

26 tháng 6 2017

Gọi UCLN của 10n+9 và 15n+14 là d
Ta có
\(10n+9⋮d;15n+15⋮d\)
\(\Rightarrow2\left(15n+14\right)-3\left(10n+9\right)=\left(30n+28\right)-\left(30n+27\right)=1⋮d\)
Vậy d=1 nên 10n+9 và 15n+14 nguyên tố cùng nhau
\(\Rightarrow\frac{10n+9}{15n+14}\)là phân số tối giản

23 tháng 2 2016

Gọi UCLN(3 x n;3 x n+1)=d

Ta có 3 x n chia hết cho d

      3 x n+1 chia hết cho d

=>(3 x n+1)-(3 x n) chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy phân số trên tối giản

23 tháng 2 2016

Gọi d là ƯC ( 3n ; 3n + 1 )

=> 3n ⋮ d

=> 3n + 1 ⋮ d

=> [ ( 3n + 1 ) - 3n ] ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯC ( 3n ; 3n + 1 ) = 1 nên 3n/3n+1 là p/s tối giản ( đpcm )

14 tháng 1 2018

gọi d là ƯCLN ( 21n + 4 ; 14n + 3 ) 

\(\Rightarrow\)21n + 4 \(⋮\)d  \(\Rightarrow\)2 . ( 21n + 4 ) \(⋮\)\(\Rightarrow\)42n + 8 \(⋮\)d ( 1 )

\(\Rightarrow\)14n + 3 \(⋮\)\(\Rightarrow\)3 . ( 14n + 3 ) \(⋮\)\(\Rightarrow\)42n + 9 \(⋮\)d ( 2 )

Từ ( 1 ) và ( 2 )  \(\Rightarrow\)( 42n + 9 ) - ( 42n + 8 ) = 1 \(⋮\)d

\(\Rightarrow\)d = 1 mà ƯCLN ( 21n + 4 ; 14n + 3 ) = d nên phân số \(\frac{21n+4}{14n+3}\)là phân số tối giản

19 tháng 6 2017

Gọi d là UCLN(n+3,2n+5)

=> n+3:d , 2n+5:d

=>2n+6:d , 2n+5:d

=>2n+6 - 2n+5 :d

=> 1: d

Vậy n+3/2n+5 là phan so toi gian

Minh nhanh nhat nen cho minh nhe

28 tháng 2 2018

gọi \(\text{Ư}CLN_{\left(n+3;2n+5\right)}=d\)

\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}}\)

\(\Rightarrow2n+6-\left(2n+5\right)⋮d\)

\(\Rightarrow2n+6-2n-5⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

vậy phân số \(\frac{n+3}{2n+5}\) là phân số tối giản

26 tháng 2 2017

Gọi d là ƯCLN của n + 1 và 2n + 3

Khi đó n + 1 chai hết cho d ; 2n + 3 chia hết cho d

<=> 2n + 2 chia hết cho d  ; 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chai hết cho d

=> 1 chia hết cho d

=> d = 1 

Vậy p/s n + 1/2n + 3 tối giản vs mọi n thuộc N