K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

Gọi d là ƯCLN của n + 1 và 2n + 3

Khi đó n + 1 chai hết cho d ; 2n + 3 chia hết cho d

<=> 2n + 2 chia hết cho d  ; 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chai hết cho d

=> 1 chia hết cho d

=> d = 1 

Vậy p/s n + 1/2n + 3 tối giản vs mọi n thuộc N

19 tháng 6 2017

Gọi d là UCLN(n+3,2n+5)

=> n+3:d , 2n+5:d

=>2n+6:d , 2n+5:d

=>2n+6 - 2n+5 :d

=> 1: d

Vậy n+3/2n+5 là phan so toi gian

Minh nhanh nhat nen cho minh nhe

28 tháng 2 2018

gọi \(\text{Ư}CLN_{\left(n+3;2n+5\right)}=d\)

\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}}\)

\(\Rightarrow2n+6-\left(2n+5\right)⋮d\)

\(\Rightarrow2n+6-2n-5⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

vậy phân số \(\frac{n+3}{2n+5}\) là phân số tối giản

14 tháng 2 2019

Bạn ơi có sai đề không?Bởi nếu n là số lẻ thì cả n+1 và n+3 đều là số chẵn ,đều chia hết cho 2 và có thể rút gọn mà,sao là phân số tối giản được

9 tháng 3 2021

Đặt \(n+1;2n+3=d\)

\(n+1⋮d\Rightarrow2n+2\)(1)

\(2n+3⋮d\)(2)

Lấy 2 - 1 ta có : 

\(2n+3-2n-2⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ta có đpcm

14 tháng 7 2015

Gọi ƯCLN(n+1; 2n+3) là d. Ta có:

n+1 chia hết cho d => 2n+2 chia hết cho d

2n+3 chia hết cho d

=> 2n+3-(2n+2) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> \(\frac{n+1}{2n+3}\)là phân số tối giản (Đpcm)

26 tháng 6 2018

gọi d là ƯCLN của \(\frac{n+1}{2n+3}\)ta có:

\(\text{(2n+3)-(n-1) ⋮d}\)

\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)

\(\Rightarrow2n+3-2n-2⋮d\)

\(\Rightarrow2n-2n+3-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

vậy \(\frac{n+1}{2n+3}\)là p/s tối giản với mọt số tự nhiên n

6 tháng 4 2017

Gọi d là WCLN (n + 1; 2n + 3) nên ta có :

\(n+1⋮d\) và \(2n+3⋮d\)

\(\Rightarrow2\left(n+1\right)⋮d\) và \(2n+3⋮d\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Do đó : \(A=\frac{n+1}{2n+3}\) tối giản (ĐPCM)

6 tháng 4 2017

Gọi d= ƯCLN(n+1;2n+3)

=> n+1 :d

    2n+3 : d  ( mình viết dấu : thay cho dấu chia hết nhé)

=>2.(n+1) :d

    2n+3 :d

=>2n+2:d

  2n+3:d

=>(2n+3)-(2n+2):d

=>1:d

=>d=1

Vậy ƯCLN(n+1;2n+3)=1

Vì ƯCLN(n+1;2n+3)=1 nên A tối giản với n là số tự nhiên

23 tháng 7 2016

a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)

=> n + 1 chia hết cho d; 2n + 3 chia hết cho d

=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d

=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(n+1; 2n+3) = 1

=> n + 1 và 2n + 3 là 2 số nguyên tố cùng nhau

Câu b lm tương tự

7 tháng 6 2016

a) Đặt ƯCLN(n+1; 2n+3) = d

=> (2n + 3) - (n + 1) chia hết cho d

=> (2n + 3) - [2.(n + 1)] chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 1 chia hết cho d => d = 1

Do ƯCLN(n+1; 2n+3) = 1 nên \(\frac{n+1}{2n+3}\) tối giản

b) Đặt ƯCLN(2n+3; 4n+8) = d

=> (4n + 8) - (2n + 3) chia hết cho d

=> (4n + 8) - [2.(2n + 3)] chia hết cho d

=> (4n + 8) - (4n + 6) chia hết cho d

=> 2 chia hết cho d => d \(\in\) {1; 2}

Nhưng d khác 2 vì d là ước chung của 2 số lẻ nên d = 1

Do ƯCLN(2n+3; 4n+8) = 1 nên \(\frac{2n+3}{4n+8}\) tối giản 

7 tháng 6 2016

a) \(\frac{n+1}{2n+3}\)

Đặt ƯCLN(n+1; 2n+3) = d

=> n + 1 \(⋮d\) và 2n + 3 \(⋮d\)

=> (2n + 3) - (n + 1) \(⋮d\)

=> (2n + 3) - [2.(n + 1)] \(⋮d\)

=> (2n + 3) - (2n + 2) \(⋮d\)

=> 1 \(⋮d\)

=> d = 1

Do ƯCLN(n+1; 2n+3) = 1 nên phân số \(\frac{n+1}{2n+3}\) tối giản

b) \(\frac{2n+3}{4n+8}\)

Đặt ƯCLN(2n+3;4n+8) = d

=> 2n+3 \(⋮d\) và 4n+8\(⋮d\)

=> (4n + 8) - (2n + 3) \(⋮d\)

=> (4n + 8) - [2.(2n + 3)] \(⋮d\)

=> (4n + 8) - (4n + 6) \(⋮d\)

=> 2 chia hết cho d

=> d {1; 2}

Vì 2n + 3 là số lẻ, 4n + 8 là số chẵn nên ƯC(2n+3;4n+8) là 1 số lẻ

=> \(d\ne2\Rightarrow d=1\)

Do ƯCLN(2n+3; 4n+8) = 1 nên phân số \(\frac{2n+3}{4n+8}\) tối giản 

21 tháng 10 2015

vào câu hỏi tương tự  dựa theo cách lm  để giải nhé