Tìm \(n\in N\) sao cho C=\(\sqrt{n+2}+\sqrt{n+\sqrt{n+2}}\) \(\in Z\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
N=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}+\frac{\sqrt{x}+3}{2-\sqrt{x}}\)
= \(\frac{2\sqrt{x}-9}{x-2\sqrt{x}-3\sqrt{x}+6}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}-\frac{\sqrt{x}+3}{\sqrt{x}-2}\)
= \(\frac{2\sqrt{x}-9}{\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)}+\frac{2\sqrt{x}+1}{\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}\)
= \(\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
ĐKXĐ : x ≠ 4 ; x ≠ 9
Rút gọn :
=\(\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{2\sqrt{x}-9+\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1-\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
=\(\frac{2\sqrt{x}-9+\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{2\sqrt{x}-9+x-2\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{x-5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
Để N =5 thì :
<=> \(\frac{x-5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\) =5
<=> x-5 = \(\left(5\sqrt{x}-10\right)\left(\sqrt{x}-3\right)\)
<=> x-5 = 5x - \(15\sqrt{x}\) - \(10\sqrt{x}\) +30
<=> x-5x-25\(\sqrt{x}\) =35
a) \(\sqrt{x}\ne3;\sqrt{x}\ne2\Rightarrow x\ne4;x\ne9\)
\(N=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}+\frac{\sqrt{x}+3}{2-\sqrt{x}}\)
\(\Leftrightarrow N=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}-\frac{\sqrt{x}+3}{\sqrt{x}-2}\)
\(\Leftrightarrow N=\frac{2\sqrt{x}-9+2x-3\sqrt{x}-2-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(\Rightarrow N=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b) \(N=5\Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}-3}=5\)
\(\Leftrightarrow\sqrt{x}+1=5\sqrt{x}-15\Leftrightarrow4\sqrt{x}=16\)
\(\Leftrightarrow\sqrt{x}=4\Rightarrow x=16\) (thỏa mãn)
c) \(N=\frac{\sqrt{x}+1}{\sqrt{x}-5}=\frac{\sqrt{x}-5+6}{\sqrt{x}-5}=1+\frac{6}{\sqrt{x}-5}\)
để N \(\in\) Z thì \(\left(\sqrt{x}-5\right)\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\sqrt{x}-5\) | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 36 | 16 | 49 | 9 | 64 | 4 | 121 | loại |
ĐK \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)
a. Ta có \(P=\frac{3a+3\sqrt{a}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}-\frac{\sqrt{a}-2}{\sqrt{a}-1}+\frac{1}{\sqrt{a}+2}-1\)
\(=\frac{3a+3\sqrt{a}-3-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)+\sqrt{a}-1-a-\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{3a+3\sqrt{a}-3-a+4+\sqrt{a}-1-a-\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}=\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}=\frac{\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)}\)
b. Để \(\left|P\right|=2\Rightarrow\orbr{\begin{cases}P=2\\P=-2\end{cases}}\)
Với \(P=2\Rightarrow\sqrt{a}+1=2\sqrt{a}-2\Rightarrow\sqrt{a}=3\Rightarrow a=9\)
Với \(P=-2\Rightarrow\sqrt{a}+1=2-2\sqrt{a}\Rightarrow\sqrt{a}=\frac{1}{3}\Rightarrow a=\frac{1}{9}\)
c. Ta có \(P=\frac{\sqrt{a}+1}{\sqrt{a}-1}=1+\frac{2}{\sqrt{a}-1}\)
Để \(P\in N\Rightarrow P\in Z\Rightarrow\sqrt{a}-1\in\left\{-2;-1;1;2\right\}\)
\(\sqrt{a}-1\) | \(-2\) | \(-1\) | \(1\) | \(2\) |
\(\sqrt{a}\) | \(-1\) | \(0\) | \(2\) | \(3\) |
\(a\) | \(0\) | \(4\) | \(9\) | |
\(\left(l\right)\) | \(\left(tm\right)\) | \(\left(tm\right)\) | \(\left(tm\right)\) |
Vậy \(x\in\left\{0;4;9\right\}\)thì \(P\in N\)
\(\lim\limits\dfrac{\sqrt{2\cdot4^n+1}-2^n}{\sqrt{2\cdot4^n+1}+2^n}\)
\(=\lim\limits\dfrac{2^n\cdot\sqrt{2+\dfrac{1}{4^n}}-2^n}{2^n\cdot\sqrt{2+\dfrac{1}{4^n}}+2^n}\)
\(=\lim\limits\dfrac{\sqrt{2+\dfrac{1}{4^n}}-1}{\sqrt{2+\dfrac{1}{4^n}}+1}=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}\)
\(=\dfrac{\left(\sqrt{2}-1\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\dfrac{3-2\sqrt{2}}{2-1}=3-2\sqrt{2}\)
=>a=3; b=-2
\(a^3+b^3=3^3+\left(-2\right)^3=27-8=19\)
Đề bài là có vô số dâu căn nên ta có thể giải như sau:
\(\sqrt{x+2\sqrt{x+...+2\sqrt{x+2\sqrt{3x}}}}=x\)
\(\Leftrightarrow x+2\sqrt{x+...+2\sqrt{x+2\sqrt{3x}}}=x^2\)
\(\Leftrightarrow x+2x=x^2\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Lời giải:
\(\sqrt{x+2\sqrt{3}}=\sqrt{y}+\sqrt{z}\)
\(\Rightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\) (bình phương hai vế)
\(\Leftrightarrow 2(\sqrt{yz}-\sqrt{3})=x-(y+z)\)
Đặt \(x-(y+z)=a\in \mathbb{Z}\)
\(\Rightarrow 2(\sqrt{yz}-\sqrt{3})=a\) (*)
\(\Leftrightarrow 4(yz+3-2\sqrt{3yz})=a^2\)
\(\Leftrightarrow 8\sqrt{3yz}=4(yz+3)-a^2\in\mathbb{Z}\)
Do đó, \(\sqrt{3yz}\in \mathbb{Z}\). Điều này kéo theo \(yz=3k^2\) với \(k\in\mathbb{Z}\)
Thay vào (*)
\(2(\sqrt{3k^2}-\sqrt{3})=a\Leftrightarrow 2\sqrt{3}(|k|-1)=a\)\(\in\mathbb{Z}\)
Ta thấy \(2(|k|-1)\in\mathbb{Z}; \sqrt{3}\) là một số vô tỷ và tích của chúng là một số nguyên, điều này chỉ có thể xảy ra khi \(|k|-1=0\Leftrightarrow |k|=1\)
\(\Rightarrow yz=3\)
Từ đây suy ra \((y,z)=(1,3)\) hoặc \((y,z)=(3,1)\)
Thay vào pt ban đầu ta tìm được \(x=4\)
Vậy \((x,y,z)=(4;1;3);(4;3;1)\)
cái chỗ điều này kéo theo yz=3k^2 e k hỉu ạ
giải thích hộ e
Vì \(n\in Z^+\)nên\(n\left(n+1\right)\left(n+2\right)>n^3\Rightarrow\sqrt[3]{n\left(n+1\right)\left(n+2\right)}>n\)
\(\Rightarrow\sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}+...+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}>n\)(1)
Lại có:\(n^2+2n+1>n^2+2n\Rightarrow\left(n+1\right)^2>n\left(n+2\right)\Rightarrow\left(n+1\right)^3>n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow n+1>\sqrt[3]{n\left(n+1\right)\left(n+2\right)}\\ \Rightarrow\sqrt[3]{n^3+3n^2+3n+1}>\sqrt[3]{n^3+3n^2+2n}\)
\(\Rightarrow\sqrt[3]{n^3+3n^2+2n+n+1}>\sqrt[3]{n^3+3n^2+2n+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}\)
\(\Rightarrow\sqrt[3]{\left(n+1\right)^3}>\sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}\)
Tương tự \(\Rightarrow n+1>\sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}+...+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}\)(2)
Từ (1) và (2) suy ra:
\(n< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}+...+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}< n+1\)
\(n\in Z^+\)nên n2 < n2 + 2n < n2 + 2n + 1 <=> n2 < n(n + 2) < (n + 1)2 => n3 < n(n + 1)(n + 2) < (n + 1)3
=>\(n< \sqrt[3]{n\left(n+1\right)\left(n+2\right)}< n+1\)
=>\(n< \sqrt[3]{n\left(n+1\right)\left(n+2\right)}< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+n}\)\(< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+n+1}\)\(=\sqrt[3]{\left(n+1\right)\left(n^2+2n+1\right)}=\sqrt[3]{\left(n+1\right)\left(n+1\right)^2}=n+1\)
=>\(n< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+n}\)
\(< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}}< n+1\)
Tiếp tục như vậy,ta có đpcm.