Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\sqrt{x+2\sqrt{3}}=\sqrt{y}+\sqrt{z}\)
\(\Leftrightarrow\left(\sqrt{x+2\sqrt{3}}\right)^2=\left(\sqrt{y}+\sqrt{z}\right)^2\)
\(\Leftrightarrow y+2\sqrt{3}=y+z+2\sqrt{yz}\)
\(\Leftrightarrow x-y-z+2\sqrt{3}=2\sqrt{yz}\)
\(\Leftrightarrow\left[\left(x-y-z\right)+2\sqrt{3}\right]^2=\left(2\sqrt{yz}\right)^2\)
\(\Leftrightarrow\left(x-y-z\right)^2+4\sqrt{3}.\left(x-y-z\right)+12=4yz\) (1)
- Nếu x - y - z = 0 thì (1) trở thành: \(\hept{\begin{cases}x-y-z=0\\4yz=12\end{cases}\Leftrightarrow\hept{\begin{cases}x-y-z=0\\yz=3\end{cases}}}\)
ta thấy x;y;z thuộc N nên yz=3=1.3=3.1
y=1;z=3 hoặc y=3; z=1 thì x vẫn bằng 4
\(\Rightarrow\hept{\begin{cases}x=4\\y=1\\z=3\end{cases}}\) hoặc \(\hept{\begin{cases}x=4\\y=3\\z=1\end{cases}}\)
(THỎA MÃN)
- Nếu x - y - z khác 0
Ta có: \(\frac{4yz-\left(x-y-z\right)^2-12}{4\left(x-y-z\right)}=\sqrt{3}\)
(x;y;z là số tự nhiên nên vế trái là số hữu tỉ, mà ở đây vế phải là căn 3 => Vô lý)
Vậy \(\hept{\begin{cases}x=4\\y=1\\z=3\end{cases}}\) hoặc \(\hept{\begin{cases}x=4\\y=3\\z=1\end{cases}}\)
Ta có:
\(1.\sqrt{1+x^2}+1.\sqrt{2x}\le\sqrt{\left(1+1\right)\left(1+x^2+2x\right)}=\sqrt{2}\left(x+1\right)\)
Tương tự:
\(\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\) ; \(\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\)
Cộng vế:
\(P\le\sqrt{2}\left(x+y+z+3\right)+\left(2-\sqrt{2}\right)\left(x+y+z\right)\le\sqrt{2}\left(3+3\right)+\left(2-\sqrt{2}\right).3=6+3\sqrt{2}\)
\(P_{max}=6+3\sqrt{2}\) khi \(x=y=z=1\)
\(a^2+b^2=\left(a+b-c\right)^2=a^2+\left(b-c\right)^2+2a\left(b-c\right)=b^2+\left(a-c\right)^2+2b\left(a-c\right)\)
\(\Rightarrow\left\{{}\begin{matrix}b^2=\left(b-c\right)^2+2a\left(b-c\right)\\a^2=\left(a-c\right)^2+2b\left(a-c\right)\end{matrix}\right.\)
\(\Rightarrow\dfrac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\dfrac{\left(a-c\right)^2+2b\left(a-c\right)+\left(a-c\right)^2}{\left(b-c\right)^2+2a\left(b-c\right)+\left(b-c\right)^2}\)
\(=\dfrac{\left(a-c\right)\left(a+b-c\right)}{\left(b-c\right)\left(b+a-c\right)}=\dfrac{a-c}{b-c}\) (đpcm)
Đặt \(\left(\sqrt{x};2\sqrt{y};3\sqrt{z}\right)=\left(a;b;c\right)\Rightarrow a;b;c\ge0\)
Ta có:
\(\dfrac{2}{a+b+c}-\dfrac{1}{ab+bc+ca}\le\dfrac{2}{a+b+c}-\dfrac{3}{\left(a+b+c\right)^2}=-3\left(\dfrac{1}{a+b+c}-\dfrac{1}{3}\right)^2+\dfrac{1}{3}\le\dfrac{1}{3}\)
Đẳng thức xảy ra khi và chỉ khi: \(a=b=c=1\Rightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{4}\\z=\dfrac{1}{9}\end{matrix}\right.\)
bài này dễ nhưng bạn phải chứng minh bđt này đã:
\(\frac{1}{a+b+c+d}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\)
với a;b;c;d là các số dương
bạn có thể cm bđt trên bằng cách biến đổi tương đương hoặc cm bđt Schwat (Sơ-vác)
Mình là 1 phần tử đại diện còn lại là hoàn toàn tt nhé
ta có \(\frac{1}{3\sqrt{x}+3\sqrt{y}+2\sqrt{z}}=\frac{1}{2\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{y}+\sqrt{z}\right)+\left(\sqrt{x}+\sqrt{z}\right)}\)
\(\le\frac{1}{16}\left(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{x}+\sqrt{z}}\right)\)
Tương tự ta cm được
\(VT\le\frac{1}{16}.4\left(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{z}+\sqrt{x}}\right)\)\(=\frac{1}{4}.3=\frac{3}{4}\)
dấu "=" khi x=y=z
Lời giải:
\(\sqrt{x+2\sqrt{3}}=\sqrt{y}+\sqrt{z}\)
\(\Rightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\) (bình phương hai vế)
\(\Leftrightarrow 2(\sqrt{yz}-\sqrt{3})=x-(y+z)\)
Đặt \(x-(y+z)=a\in \mathbb{Z}\)
\(\Rightarrow 2(\sqrt{yz}-\sqrt{3})=a\) (*)
\(\Leftrightarrow 4(yz+3-2\sqrt{3yz})=a^2\)
\(\Leftrightarrow 8\sqrt{3yz}=4(yz+3)-a^2\in\mathbb{Z}\)
Do đó, \(\sqrt{3yz}\in \mathbb{Z}\). Điều này kéo theo \(yz=3k^2\) với \(k\in\mathbb{Z}\)
Thay vào (*)
\(2(\sqrt{3k^2}-\sqrt{3})=a\Leftrightarrow 2\sqrt{3}(|k|-1)=a\)\(\in\mathbb{Z}\)
Ta thấy \(2(|k|-1)\in\mathbb{Z}; \sqrt{3}\) là một số vô tỷ và tích của chúng là một số nguyên, điều này chỉ có thể xảy ra khi \(|k|-1=0\Leftrightarrow |k|=1\)
\(\Rightarrow yz=3\)
Từ đây suy ra \((y,z)=(1,3)\) hoặc \((y,z)=(3,1)\)
Thay vào pt ban đầu ta tìm được \(x=4\)
Vậy \((x,y,z)=(4;1;3);(4;3;1)\)
cái chỗ điều này kéo theo yz=3k^2 e k hỉu ạ
giải thích hộ e