( 5^2 + 1) ( 5^4+1) (5^8+1)(5^16 +1)(5^32 + 1)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: A=1/3+1/9+...+1/3^10
=>3A=1+1/3+...+1/3^9
=>A*2=1-1/3^10=(3^10-1)/3^10
=>A=(3^10-1)/(2*3^10)
c: C=3/2+3/8+3/32+3/128+3/512
=>4C=6+3/2+...+3/128
=>3C=6-3/512
=>C=1023/512
d: A=1/2+...+1/256
=>2A=1+1/2+...+1/128
=>A=1-1/256=255/256
\(\dfrac{4}{5}\) : (\(\dfrac{4}{5}\) .- \(\dfrac{5}{4}\)) : (\(\dfrac{16}{25}\) - \(\dfrac{1}{5}\))
= \(\dfrac{4}{5}\) : (-1) : (\(\dfrac{16}{25}\) - \(\dfrac{5}{25}\))
= -\(\dfrac{4}{5}\) : \(\dfrac{11}{25}\)
= - \(\dfrac{4}{5}\) x \(\dfrac{25}{11}\)
= - \(\dfrac{20}{11}\)
\(\dfrac{4}{5}\): (\(\dfrac{4}{5}\).-\(\dfrac{5}{4}\)) : (\(\dfrac{16}{25}\) - \(\dfrac{1}{5}\))
=\(\dfrac{4}{5}\) x - 1: (\(\dfrac{16}{25}\) - \(\dfrac{5}{25}\))
= - \(\dfrac{4}{5}\) : \(\dfrac{11}{25}\)
= - \(\dfrac{4}{5}\) x \(\dfrac{25}{11}\)
= - \(\dfrac{20}{11}\)
\(\dfrac{11}{12}\): (\(\dfrac{7}{9}\) + - \(\dfrac{1}{3}\)) - (\(\dfrac{2}{3}\) - \(\dfrac{5}{15}\))
= \(\dfrac{11}{12}\) : (\(\dfrac{7}{9}\) - \(\dfrac{3}{9}\)) - (\(\dfrac{2}{3}\) - \(\dfrac{1}{3}\))
= \(\dfrac{11}{12}\) : \(\dfrac{4}{9}\) - \(\dfrac{1}{3}\)
= \(\dfrac{11}{12}\) x \(\dfrac{9}{4}\) - \(\dfrac{1}{3}\)
= \(\dfrac{99}{48}\) - \(\dfrac{16}{48}\)
= \(\dfrac{83}{48}\)
\(A=\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(4A=\left(5-1\right)\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(4A=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(4A=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
...
\(4A=5^{64}-1\)
\(\Rightarrow A=\frac{5^{64}-1}{4}>B=\frac{5^{64}-1}{5}\)
\(12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(=\frac{1}{2}\left(5^{32}-1\right)\left(5^{32}+1\right)\)
\(=\frac{1}{2}\left(5^{64}-1\right)\)
c: \(=\dfrac{3}{2}\cdot1-1-20=\dfrac{3}{2}-21=\dfrac{-39}{2}\)