K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2016

Gọi 3 số tự nhiên cần tìm là : a ; a + 1 ; a + 2

KHi đó ta có: a + (a + 1) + (a + 2) = (a + a + a) + ( 1 + 2)

                                                  =3a + 3

                                                  = 3.(a + 1) chia hết cho 3

Gọi 3 số liên tiếp đó là : a ; a + 1 l a  +2

Theo bài ra ta có :

 a + ( a + 1 ) + ( a + 2 ) 

= ( a + a + a ) + ( 1 + 2 )

= 3a + 3 

= 3 ( a + 1 ) chia hết cho 3

15 tháng 1 2018

gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2. => a+(a+1)(a+2)=a+a+1+a+2=3a+3. 3a chia hết cho 3,3 cũng chia hết cho 3 => tổng này luôn luôn chia hết cho 3

4 tháng 1 2022

.

25 tháng 7 2018

gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2.

=> a+(a+1)(a+2)=a+a+1+a+2=3a+3.

3a chia hết cho 3,3 cũng chia hết cho 3

=> tổng này luôn luôn chia hết cho 3.

19 tháng 10 2019

TL :

Tham khảo tại : https://olm.vn/hoi-dap/detail/82541634980.html

Hok tốt

19 tháng 10 2019

a)Gọi 3 số tự nhiên liên tiếp là:1;a+1;a+2 (a thuộc N)

Tổng 3 số tự nhiên liên tiếp là:

S=a+a+1+a+2

=3a+3

Vì 3 chia hết cho 3 =>3a+a chia hết cho 3

hay S chia hết cho 3

Vậy_______________

Bạn tự kết luận nhé!

b)Tương tự câu a

20 tháng 10 2019

a) Gọi 4 số liên tiếp là a, a + 1, a + 2, a+3

Có: a + a + 1 + a + 2 + a + 3 = 4a + 6 chia 4 dư 2 

=> đpcm

b) Gọi 3 số tự nhiên liên tiếp là a,a+1,a+2

Có: (a+1)a(a+2) (1). Với a = 3k thì tích (1) chia hết cho 3.

Với a = 3k + 1 thì a + 2 chia hết cho 3 => (1) chia hết cho 3

Với a = 3k = 2 thì a + 1 chia hết cho 3 => (2) chia hết cho 3

Vậy a(a+1)(a+2) luôn chia hết cho 3 => đpcm.

26 tháng 7 2015

a) Vì tổng tận cùng là 0 nên chia hết cho 2;5

b) Vì ba số tự nhiên liên tiếp luôn luôn có số chẵn ba số tự nhiên liên tiếp luôn luôn có 1 số chia hết cho 3

nên chia hết cho 2 ;3

Tích đúng nha

28 tháng 6 2017

Gọi 3 số tự nhiên liên tiếp đó là a, a+1, a+2

Ta có tích sau

a.(a+1).(a+2)=a(1+2)=4.3

=> tích của 3 số tự nhiên liên tiếp chia hết cho 3

k mik nha

28 tháng 6 2017

Gọi 3 số tự nhiên liên tiếp là n ; n + 1 ; n + 2

Xét các giá trị là số tự nhiên 

=> có 2 trường hợp 

Th1 : n là số lẻ (n = 2k + 1  với k thuộc N)

=> n + n + 1 + n + 2 

= 2k + 1 + 2k + 1 + 1 + 2k + 1 + 2

= 6k + (1 + 1 + 1 + 1 + 2)

= 6k + 6

= 3(2k + 2) chia hết cho 3       (1)

Với n là số chẵn (n = 2k với k thuộc N)

=> 2k + 2k + 1 + 2k + 2

= 6k + 3

= 3.(2k + 1) chia hết cho 3 (2)

Từ (1) và (2) 

=> Với mọi n thuộc N , 3 số tự nhiên liên tiếp luôn chia hết cho 3 

2 tháng 12 2023

Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2

TH1: Nếu a chia hết cho 3 => Đề bài đúng

TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)

=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng

TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)

=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng

TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)

2 tháng 12 2023

Bài 5:

Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3

Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2

Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4

Nhưng: 2 không chia hết cho 4

Nên: 4(b+1)+2 không chia hết cho 4

Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4 

Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)

7 tháng 8 2015

Ta thấy :  3 số tự nhiên liên tiếp luôn có 1 số là bội của 3

 =>  Tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3

=>  đpcm