Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi 4 số liên tiếp là a, a + 1, a + 2, a+3
Có: a + a + 1 + a + 2 + a + 3 = 4a + 6 chia 4 dư 2
=> đpcm
b) Gọi 3 số tự nhiên liên tiếp là a,a+1,a+2
Có: (a+1)a(a+2) (1). Với a = 3k thì tích (1) chia hết cho 3.
Với a = 3k + 1 thì a + 2 chia hết cho 3 => (1) chia hết cho 3
Với a = 3k = 2 thì a + 1 chia hết cho 3 => (2) chia hết cho 3
Vậy a(a+1)(a+2) luôn chia hết cho 3 => đpcm.
https://olm.vn/hoi-dap/question/118678.htm Ok nha Giờ bn giúp mk làm bài toán hình học lớ 6 đc k
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2
Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)
b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)
c, Hai số tự nhiên liên tiếp là k và k+1
Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2
Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2
(ĐPCM)
d, Ba số tự nhiên liên tiếp là m;m+1 và m+2
Tích chúng: m(m+1)(m+2)
+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3
=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)
Gọi a; a + 1; a + 2 là 3 số tự nhiên liên tiếp
Ta có a + a + 1 + a + 2 = 3a + 3 = 3(a + 1) chia hết cho 3
=> a + a + 1 + a + 2 chia hết cho 3
Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
Gọi ba số tự nhiên liên tiếp là : a ; a + 1 ; a + 2
Tổng của ba số này bằng :
a + (a + 1) + (a + 2) = 3a + 3 = 3 (a + 1) chia hết cho 3
Suy ra : a + a + 1 + a + 2 chia hết cho 3
Vậy tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3