Giup mk tich cho
\(\frac{1}{2.2}\)+\(\frac{1}{3.3}\)+...........+\(\frac{1}{100.100}\)so sanh voi 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3.3}< \frac{1}{2.3}\)
\(\frac{1}{4.4}< \frac{1}{3.4}\)
...................
\(\frac{1}{100.100}< \frac{1}{99.100}\)
Suy Ra : \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+......+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\)
\(\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{100.100}< 1-\frac{1}{100}=\frac{99}{100}< 1\)
Ta có : \(\frac{1}{2.2}\)\(< \frac{1}{1.2}\)
\(\frac{1}{3.3}\)\(< \frac{1}{2.3}\)
\(\frac{1}{4.4}\)\(< \frac{1}{3.4}\)
...... .... ......
\(\frac{1}{100.100}\)\(< \frac{1}{99.100}\)
\(\Rightarrow\)\(\frac{1}{2.2}\)+ \(\frac{1}{3.3}\)+ \(\frac{1}{4.4}\)+ ..... + \(\frac{1}{100.100}\)< \(\frac{1}{1.2}\)+ \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+ ..... + \(\frac{1}{99.100}\)
\(\frac{1}{2.2}\)+ \(\frac{1}{3.3}\)+ .... + \(\frac{1}{100.100}\)< \(1-\frac{1}{100}=\frac{99}{100}< 1\)
Bạn sai đè thì phải,đúng phải là 1/99
Ta thấy:Từ 1->1/100 có 100 số.
Ta có:100=1.100
Vì 1=1 ;1/2<1 ;1/3<1 ;1/4<1 ;... ;1/90<1 ;1/100<1.
\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}< 1.100=100\)
\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}< 100\)
1/2.2 + 1/3.3 + 1/4.4 +....+ 1/99.99 + 1/100.100
= 1/1.2 + 1/2.3 + 1/3.4 +...+ 1/98.99 + 1/99.100
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/98 - 1/99 + 1/99 - 1/100
= 1/1 - 1/100
= 99/100
Ta có:\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{10.10}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}< 1\)
=>A<1
1/2.2 < 1/1.2
1/3.3 < 1/2.3
..................
1/100.100 < 1/99.100
=> <
Ta có: \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{100.100}=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)
Vì \(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
\(\frac{1}{4^2}<\frac{1}{3.4}\)
.....
\(\frac{1}{100^2}<\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}<1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<1\left(đpcm\right)\)
Đặt \(A=\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{100.100}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}\)
\(\Rightarrow A< \frac{99}{100}\)
Mà \(\frac{99}{100}< 1\Rightarrow A< \frac{99}{100}< 1\)
\(\Rightarrow A< 1\)