Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{100.100}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}\)
\(\Rightarrow A< \frac{99}{100}\)
Mà \(\frac{99}{100}< 1\Rightarrow A< \frac{99}{100}< 1\)
\(\Rightarrow A< 1\)
Có : 1/2^2+1/3^2+....+1/100^2 < 1/1.2+1/2.3+....+1/99.100 = 1-1/2+1/2-1/3+....+1/99-1/100 = 1-1/100 < 1
=> ĐPCM
k mk nha
Ta có : 1/2.2 < 1/1.2
1/3.3 < 1/2.3
.
.
.
1/100.100<1/99.100
==> 1/2.2+1/3.3+...+1/100.100 < 1/1.2 + 1/2.3+....+1/99.100
=> A < 1-1/100
=> A<99/100<100/100=1
==> a<1
1/2.2 < 1/1.2
1/3.3 < 1/2.3
..................
1/100.100 < 1/99.100
=> <
Ta có: \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{100.100}=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)
Vì \(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
\(\frac{1}{4^2}<\frac{1}{3.4}\)
.....
\(\frac{1}{100^2}<\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}<1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<1\left(đpcm\right)\)
S= 1/2 - 1/2 + 1/3 - 1/3 + 1/4 - 1/4 +...+ 1/50 - 1/50
S= 0 + 0 + 0 +...+ 0
S= 0
Ta có : \(\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3.3}< \frac{1}{2.3}\)
\(\frac{1}{4.4}< \frac{1}{3.4}\)
...................
\(\frac{1}{100.100}< \frac{1}{99.100}\)
Suy Ra : \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+......+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\)
\(\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{100.100}< 1-\frac{1}{100}=\frac{99}{100}< 1\)
Ta có : \(\frac{1}{2.2}\)\(< \frac{1}{1.2}\)
\(\frac{1}{3.3}\)\(< \frac{1}{2.3}\)
\(\frac{1}{4.4}\)\(< \frac{1}{3.4}\)
...... .... ......
\(\frac{1}{100.100}\)\(< \frac{1}{99.100}\)
\(\Rightarrow\)\(\frac{1}{2.2}\)+ \(\frac{1}{3.3}\)+ \(\frac{1}{4.4}\)+ ..... + \(\frac{1}{100.100}\)< \(\frac{1}{1.2}\)+ \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+ ..... + \(\frac{1}{99.100}\)
\(\frac{1}{2.2}\)+ \(\frac{1}{3.3}\)+ .... + \(\frac{1}{100.100}\)< \(1-\frac{1}{100}=\frac{99}{100}< 1\)