Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3.3}< \frac{1}{2.3}\)
\(\frac{1}{4.4}< \frac{1}{3.4}\)
...................
\(\frac{1}{100.100}< \frac{1}{99.100}\)
Suy Ra : \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+......+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\)
\(\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{100.100}< 1-\frac{1}{100}=\frac{99}{100}< 1\)
Ta có : \(\frac{1}{2.2}\)\(< \frac{1}{1.2}\)
\(\frac{1}{3.3}\)\(< \frac{1}{2.3}\)
\(\frac{1}{4.4}\)\(< \frac{1}{3.4}\)
...... .... ......
\(\frac{1}{100.100}\)\(< \frac{1}{99.100}\)
\(\Rightarrow\)\(\frac{1}{2.2}\)+ \(\frac{1}{3.3}\)+ \(\frac{1}{4.4}\)+ ..... + \(\frac{1}{100.100}\)< \(\frac{1}{1.2}\)+ \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+ ..... + \(\frac{1}{99.100}\)
\(\frac{1}{2.2}\)+ \(\frac{1}{3.3}\)+ .... + \(\frac{1}{100.100}\)< \(1-\frac{1}{100}=\frac{99}{100}< 1\)
Ta có:
\(\frac{1}{2.2}\)<\(\frac{1}{1.2}\)
\(\frac{1}{3.3}\)<\(\frac{1}{2.3}\)
..............
\(\frac{1}{1009.1009}\)<\(\frac{1}{1008.1009}\)
=>A< \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1008.1009}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1008}-\frac{1}{1009}\)
=\(\frac{1}{1}-\frac{1}{1009}=\frac{1008}{1009}>\frac{1008}{1344}=\frac{3}{4}\)
=>A<\(\frac{3}{4}\)
Mình nghĩ bạn cần xem lại :
\(A< \frac{1008}{1009}>\frac{1008}{1344}=\frac{3}{4}\)không có nghĩa là \(A< \frac{3}{4}\)
Xem lại ..
Tổng trên = 1-2^2/2^2 . 1-3^2/3^2 . ..... . 1-100^2/100^2
= -(2^2-1/2^2 . 3^2-1/3^2 . ...... . 100^2-1/100^2 )
= -(1.3/2^2 . 2.4/3^2 . ..... . 99.101/100)
= -(1.2.3. .... .99 . 3.4.5. ... .101 / 2.3.4 . ... . 100 . 2.3.4 . ..... . 100)
= -(1.2.3. ... . 99/2.3.4. .... .100) . (3.4.5. .... .101/2.3.4 . .... . 100)
= -1/100 . 101/2 = -101/200
Tk mk nha
\(\left(6+\left(\frac{1}{2}\right)^3-\left|-\frac{1}{2}\right|\right):\frac{3}{12}\)
\(=\left(6+\frac{1}{8}+\frac{1}{2}\right):\frac{1}{4}\)
=\(\frac{53}{8}:\frac{1}{4}\)
\(=\frac{53}{2}\)
a)30/60,-40/60,45/60,48/60
45/60>30/60>-40/60>-48/60
=3/4>1/2>-2/3>-4/5
A = 1/5×5 + 1/6×6 + ... + 1/100×100
A < 1/4×5 + 1/5×6 + ... + 1/99×100
A < 1/4 - 1/5 + 1/5 - 1/6 + ... + 1/99 - 1/100
A < 1/4 - 1/100 < 1/4 (1)
A = 1/5×5 + 1/6×6 + ... + 1/100×100
A > 1/5×6 + 1/6×7 + ... + 1/100×101
A > 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/100 - 1/101
A > 1/5 - 1/101 > 1/5 - 1/30
A > 6/30 - 1/30 = 1/6 (2)
Từ (1) và (2) => 1/6 < A < 1/4 ( đpcm)
Đặt \(A=\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{100.100}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}\)
\(\Rightarrow A< \frac{99}{100}\)
Mà \(\frac{99}{100}< 1\Rightarrow A< \frac{99}{100}< 1\)
\(\Rightarrow A< 1\)