a.1/3 x 2019/2020
b. 2017 x 2018/2019 x 2019/2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2019-2019.x2018+2019.x2018+2019.x2017-2019.x2016+......2019.x-200 Tại x=2018
Giúp mik vs nhé
Sai đề nên t sửa luôn nhé!
Vì \(x=2018\Rightarrow2019=2018+1=x+1\)
\(A=x^{2017}-2019\cdot x^{2018}+2019\cdot x^{2017}-2019\cdot x^{2016}+....+2019\cdot x-200\)
\(\Rightarrow A=x^{2019}-\left(x+1\right)x^{2018}+\left(x+1\right)x^{2017}-\left(x+1\right)x^{2016}+....-\left(x+1\right)x^2+\left(x+1\right)x-200\)
\(\Rightarrow A=x^{2019}-x^{2019}-x^{2018}+x^{2018}+x^{2017}-x^{2017}-x^{2016}+....-x^3-x^2+x^2+x-200\)
\(\Rightarrow A=x-200=2018-200=1818\)
B=\(x^{2019}-2019.x^{2018}+2019.x^{2017}-...+2019x-1\)
Ta có : 2019 = 1+2018=1+x ( vì x = 2018 )
Suy ra : \(x^{2019}-\left(x+1\right).x^{2018}+\left(x+1\right).x^{2017}-....+\left(x+1\right).x-1\)
=\(x^{2019}-\left(x^{2019}+x^{2018}\right)+\left(x^{2018}+x^{2017}\right)-...+\left(x^2+x\right)-1\)
= \(x^{2019}-x^{2019}-x^{2018}+x^{2018}+x^{2017}-....+x^2+x-1\)
= \(x-1\) mà x =2018
=> \(x-1=2018-1=2017\)
Vậy giá trị của biểu thức B = 2017
\(x=0\) không là nghiệm của phương trình
Chia hai vế phương trình cho x, phương trình trở thành:
\(\left(x+\dfrac{4}{x}\right)+2-m=4\sqrt{x+\dfrac{4}{x}}\left(1\right)\)
Đặt \(x+\dfrac{4}{x}=t\left(t\ge2\right)\)
\(\left(1\right)\Leftrightarrow m=f\left(t\right)=t^2-4t+2\left(2\right)\)
Phương trình đã cho có nghiệm khi phương trình \(\left(2\right)\) có nghiệm \(t\ge2\)
\(\Leftrightarrow m\ge f\left(2\right)=-2\)
\(\Rightarrow\) có 2021 giá trị thỏa mãn yêu cầu bài toán