K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

https://meet.google.com/bfu-vyru-hhnhttps://meet.google.com/bfu-vyru-hhnBài 1. Xác định tập hợp A ∩ B, A ∪ B, A \ B, CRAvới:Bài 2. Cho tập hợp A = {x € R|3x + 2 ≤ 14} và B = [3m + 2; +∞). Tìm m để A∩B ≠Ø.Bài 3. Tìm TXĐ hs sau:                     Bài 4. Lập BBT và vẽ đồ thị hs sau:a. y = x2 - 4x + 3b. y = -x2 +2x - 3c. y = x2 + 2x d. y = -2x2 -2Bài 5. Tìm Parabol y = ax2 - 4x + c, biết rằng...
Đọc tiếp

https://meet.google.com/bfu-vyru-hhn

https://meet.google.com/bfu-vyru-hhn

Bài 1. Xác định tập hợp A ∩ B, A ∪ B, A \ B, CRAvới:

bai-tap-toan-10

Bài 2. Cho tập hợp A = {x € R|3x + 2 ≤ 14} và B = [3m + 2; +∞). Tìm m để A∩B ≠Ø.

Bài 3. Tìm TXĐ hs sau:

bai-tap-toan-10                     

Bài 4. Lập BBT và vẽ đồ thị hs sau:

a. y = x2 - 4x + 3

b. y = -x2 +2x - 3

c. y = x2 + 2x 

d. y = -2x2 -2

Bài 5. Tìm Parabol y = ax2 - 4x + c, biết rằng Parabol : 

Đi qua hai điểm A(1; -2) và B(2; 3).          

Có đỉnh I(-2; -2).

Có hoành độ đỉnh là -3 và đi qua điểm P(-2; 1).

Có trục đối xứng là đường thẳng x = 2 và cắt trục hoành tại điểm (3; 0).

Bài 6. Giải các phương trình sau:

bai-tap-toan-10

bai-tap-toan-10

Bài 7. Biết X1, X2 là nghiệm của phương trình 5x2 - 7x + 1 = 0. Hãy lập phương trình bậc hai có các nghiệm bai-tap-toan-10

Bài 8.

bai-tap-toan-10

17
25 tháng 10 2021

-.-???? Lớp 1 ???

25 tháng 10 2021

lớp 1 mà có cả √ luôn. thật là tuổi trẻ tài cao hiha

Câu 2: 

\(\left(A\cup B\right)\cap C=A\cap C=[1;+\infty)\cap\left(0;4\right)=[1;4)\)

Tập này có 3 phần tử nguyên

28 tháng 1 2018

Đáp án: B

3 x - 2 ≥ 4 ⇔ 3 x - 2 ≤ - 4   h o ặ c   3 x - 2 ≥ 4 ⇔ x ≤ - 2 3   h o ặ c   x ≥ 2 ⇔ A = ( - ∞ ; - 2 3 ] ∪ [ 2 ; + ∞ ) .

A ∩ B = ∅ ⇒ các phần tử thuộc B thì không thuộc A nên B ⊂ ( - 2 3 ; 2 )

⇒ m ≥ - 2 3 m + 2 < 2 ⇔ m ≥ - 2 3 m < 0 ⇒ m ∈ [ - 2 3 ; 0 ) .

a: A=[1;+∞)

B=(-∞;3]

b: A giao B=[1;3]

A hợp B=R

A\B=(3;+∞)

B\A=(-∞;1)

22 tháng 6 2021

Nhanh hộ mk cái nha

K cho 3 bn đầu tiên

3x+2143x12x4A=(;4]B=[3m+2;+)AB3m+243m2m23Vym23

17 tháng 9 2023

\(A=\left\{x\in R|\left(x-2x^2\right)\left(x^2-3x+2\right)=0\right\}\)

Giải phương trình sau :

 \(\left(x-2x^2\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow x\left(1-2x\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1-2x=0\\x-1=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\\x=2\end{matrix}\right.\)

\(\Rightarrow A=\left\{0;\dfrac{1}{2};1;2\right\}\)

\(B=\left\{n\in N|3< n\left(n+1\right)< 31\right\}\)

Giải bất phương trình sau :

\(3< n\left(n+1\right)< 31\)

\(\Leftrightarrow\left\{{}\begin{matrix}n\left(n+1\right)>3\\n\left(n+1\right)< 31\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n^2+n-3>0\\n^2+n-31< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n< \dfrac{-1-\sqrt[]{13}}{2}\cup n>\dfrac{-1+\sqrt[]{13}}{2}\\\dfrac{-1-5\sqrt[]{5}}{2}< n< \dfrac{-1+5\sqrt[]{5}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1-5\sqrt[]{5}}{2}< n< \dfrac{-1-\sqrt[]{13}}{2}\\\dfrac{-1+\sqrt[]{13}}{2}< n< \dfrac{-1+5\sqrt[]{5}}{2}\end{matrix}\right.\)

Vậy \(B=\left(\dfrac{-1-5\sqrt[]{5}}{2};\dfrac{-1-\sqrt[]{13}}{2}\right)\cup\left(\dfrac{-1+\sqrt[]{13}}{2};\dfrac{-1+5\sqrt[]{5}}{2}\right)\)

\(\Rightarrow A\cap B=\left\{2\right\}\)

25 tháng 8 2023

Để xác định xem tập hợp A có phải là tập con của tập hợp B hay không, ta cần kiểm tra xem tất cả các phần tử trong tập hợp A có thuộc tập hợp B hay không. Tương tự, để xác định xem tập hợp B có phải là tập con của tập hợp A hay không, ta cần kiểm tra xem tất cả các phần tử trong tập hợp B có thuộc tập hợp A hay không.

Tập hợp A được xác định bởi điều kiện (x-1)(x-2)(x-4)=0. Điều này có nghĩa là các giá trị của x mà khi thay vào biểu thức (x-1)(x-2)(x-4) thì biểu thức này sẽ bằng 0. Các giá trị này là 1, 2 và 4. Do đó, tập hợp A là {1, 2, 4}.

Tập hợp B được xác định bởi các ước của số 4. Số 4 có các ước là 1, 2 và 4. Do đó, tập hợp B cũng là {1, 2, 4}.

Vì tập hợp A và tập hợp B đều chứa các phần tử 1, 2 và 4, nên ta có thể kết luận rằng tập hợp A là tập con của tập hợp B và tập hợp B là tập con của tập hợp A.

Vậy, tập hợp A và tập hợp B là bằng nhau.

a: A={x\(\in R\)|x^2+x-6=0 hoặc 3x^2-10x+8=0}

=>x^2+x-6=0 hoặc 3x^2-10x+8=0

=>(x+3)(x-2)=0 hoặc (x-2)(3x-4)=0

=>\(x\in\left\{-3;2;\dfrac{4}{3}\right\}\)

=>A={-3;2;4/3}

B={x\(\in\)R|x^2-2x-2=0 hoặc 2x^2-7x+6=0}

=>x^2-2x-2=0 hoặc 2x^2-7x+6=0

=>\(x\in\left\{1+\sqrt{3};1-\sqrt{3};2;\dfrac{3}{2}\right\}\)

=>\(B=\left\{1+\sqrt{3};1-\sqrt{3};2;\dfrac{3}{2}\right\}\)

A={-3;2;4/3}

b: \(B\subset X;X\subset A\)

=>\(B\subset A\)(vô lý)

Vậy: KHông có tập hợp X thỏa mãn đề bài