K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

Xét ΔABC có 

\(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)

Bài 1: 

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)

\(\Leftrightarrow HC=36\left(cm\right)\)

hay HB=25(cm)

19 tháng 9 2021

\(1,\dfrac{AB}{AC}=\dfrac{5}{6}\Leftrightarrow AB=\dfrac{5}{6}AC\)

Áp dụng HTL tam giác

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{1}{\dfrac{25}{36}AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36}{25AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36+25}{25AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{61}{25AC^2}\\ \Leftrightarrow25AC^2=54900\Leftrightarrow AC^2=2196\Leftrightarrow AC=6\sqrt{61}\left(cm\right)\\ \Leftrightarrow AB=\dfrac{5}{6}\cdot6\sqrt{61}=5\sqrt{61}\\ \Leftrightarrow BC=\sqrt{AB^2+AC^2}=61\left(cm\right)\)

Áp dụng HTL tam giác: 

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=...\\CH=\dfrac{AC^2}{BC}=...\end{matrix}\right.\)

Bài 1:

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)

\(\Leftrightarrow HC=36\left(cm\right)\)

hay HB=25(cm)

NV
22 tháng 7 2021

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\Rightarrow AB=\dfrac{5}{6}AC\)

Áp dụng hệ thức lượng: \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{30^2}=\dfrac{1}{\left(\dfrac{5}{6}AC\right)^2}+\dfrac{1}{AC^2}=\dfrac{1}{AC^2}\left(\dfrac{1}{\left(\dfrac{5}{6}\right)^2}+1\right)=\dfrac{61}{25}.\dfrac{1}{AC^2}\)

\(\Rightarrow AC=6\sqrt{61}\)

\(AB=\dfrac{5}{6}AC=5\sqrt{61}\)

\(BC=\sqrt{AB^2+AC^2}=61\)

Áp dụng hệ thức lượng:

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=25\)

\(CH=BC-BH=36\)

9 tháng 8 2022

Sao lại ra 6√61 vậy ạ

21 tháng 7 2021

Xét △AHB và△CHA có:

∠AHB=∠CHA=90 độ

∠BAH=∠ACH (vì cùng phụ với ∠HAC)

⇒△AHB∼△CHA (g.g)

⇒HB/AH=AH/HC=AB/AC

Mà AB/AC=5/6

⇒HB/AH=AH/HC=5/6

Mặt khác:AH= 30 cm

⇒HB/30=30/HC=5/6

⇒HB/30=5/6 và 30/HC=5/6

⇒HB=5/6.30 và HC=30.6/5

⇒HB=25cm và HC=36cm

Vậy HB=25cm;HC=36cm

12 tháng 7 2023

Hệ thức lượng trong tam giác vuông :

\(AB^2=BC.BH\left(1\right)\)

\(AC^2=BC.CH\left(2\right)\)

\(\left(1\right):\left(2\right)\Rightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}=\dfrac{25}{36}\left(\dfrac{AB}{AC}=\dfrac{5}{6}\right)\)

\(\Rightarrow BH=\dfrac{25}{36}CH\)

mà \(AH^2=BH.CH\)

\(\Rightarrow\dfrac{25}{36}CH^2=AH^2=30^2\)

\(\Rightarrow\dfrac{5}{6}CH=30\Rightarrow CH=\dfrac{30.6}{5}=36\) (\(\left(cm\right)\)

\(\Rightarrow BH=\dfrac{25}{36}.36=25\) \(\left(cm\right)\)

12 tháng 7 2023

A B C H

Xét tg vuông ABH và tg vuông ACH có

\(\widehat{BAH}=\widehat{ACH}\) (cùng phụ với \(\widehat{ABC}\) )

=> tg ABH đồng dạng với tg ACH

\(\Rightarrow\dfrac{AH}{HC}=\dfrac{HB}{AH}=\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Rightarrow\dfrac{30}{HC}=\dfrac{5}{6}\Rightarrow HC=\dfrac{6.30}{5}=36cm\)

\(\Rightarrow\dfrac{HB}{30}=\dfrac{5}{6}\Rightarrow HB=\dfrac{5.30}{6}=25cm\)

24 tháng 6 2018

Đặt \(\frac{AB}{5}=\frac{AC}{6}=k\)

=> AB = 5k, AC = 6k.

Áp dụng hệ thức lượng trong tam giác vuông ta có: 

\(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\)

=> \(\frac{11}{30}k^2=\frac{1}{900}\)

=> \(k=\frac{\sqrt{330}}{330}\left(cm\right)\)

=> AB = \(\frac{\sqrt{330}}{66}\) (cm); AC = \(\frac{\sqrt{330}}{55}\)(cm)

=> HB, HC = (Pytago)

27 tháng 8 2021

sửa đề : \(\frac{AB}{AC}=\frac{5}{6}\Rightarrow AB=\frac{5}{6}AC\)

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{900}=\frac{1}{\left(\frac{5}{6}AC\right)^2}+\frac{1}{AC^2}\Rightarrow AC=6\sqrt{61}\)cm 

\(\Rightarrow AB=\frac{30\sqrt{61}}{6}=5\sqrt{61}\)cm 

Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=61\)cm 

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{25.61}{61}=25\)cm 

=> \(HC=BC-HB=61-25=36\)cm 

28 tháng 8 2021

ta có: \(\frac{AB}{AC}\)\(=\frac{5}{6}\Rightarrow AB=\frac{5}{6}AC\)

áp dụng hệ thức lượng: \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

\(\Leftrightarrow\frac{1}{30^2}=\frac{1}{\left(\frac{5}{6}AC\right)^2}+\frac{1}{AC^2}=\frac{1}{AC^2}\)\(\left(\frac{1}{\left(\frac{5}{6}\right)^2}+1\right)\)\(=\frac{61}{25}.\)\(\frac{1}{AC^2}\)

\(\Rightarrow AC=6\sqrt{61}\)

\(AB=\frac{5}{6}AC=5\sqrt{61}\)

\(BC=\sqrt{AB^2+AC^2}\)\(=61\)

áp dụng hệ thức lượng:

\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=25\)

\(CH=BC-BH=36\)

Hok tốt