Rut gon bieu thuc
(x+1)2 - (x-1)2 - 3. (x+1). (x-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$(x-1)^3-(x-1)(x^2+x+1)=(x-1)[(x-1)^2-(x^2+x+1)]=(x-1)(x^2-2x+1-x^2-x-1)=(x-1)(-3x)=-3x(x-1)$
1)a)=>x2+y2+2xy-4(x2-y2-2xy)
=>x2+y2+2xy-4.x2+4y2+8xy
=>-3.x2+5y2+10xy
\(2x^2\left(x-2\right)-2x\left(x-1\right)\left(x+1\right)=2x^3-4x^2-2x^3+2x=-4x^2+2x=-2x\left(2x-1\right)\)
\(2x^2\left(x-2\right)-2x\left(x-1\right)\left(x+1\right)\)
\(=2x^3-4x^2-2x\left(x^2-1\right)\)
\(=2x^3-4x^2-2x^3+2x=-4x^2+2x\)
đk: x>=0; x khác 3
a) \(P=\frac{\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\frac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-3}=\frac{\sqrt{x}-3-5+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{x+\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(P=\frac{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+4}{\sqrt{x}+2}\)
b) \(P=\frac{\sqrt{x}+2+2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\)
ta có: \(x\ge0\Rightarrow\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\frac{2}{\sqrt{x}+2}\le1\Leftrightarrow1+\frac{2}{\sqrt{x}+2}\le2\Rightarrow MaxP=2\Rightarrow x=0\)
\(=\left(\left(x+1\right)^2-\left(x-1\right)^2\right)-3\left(x^2-1\right)\)
\(=4x-3x^2+1\)
nhầm
\(=4x-3x^2+3\) nhé