Tính bằng thuật tính xích ma A 1.2+2.3+3.4+...+2011.2012
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + .... + 2011.2012.3
=> 3S = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + .... + 2011.2012.( 2013 - 2010 )
=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + .... + 2011.2012.2013 - 2010.2011.2012
=> 3S = ( 1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + .... + ( 2010.2011.2012 - 2010.2011.2012 ) + 2011.2012.2013
=> 3S = 2011.2012.2013
=> S = ( 2011.2012.2013 ) : 3
3S=1.2.3+2.3.(4-1)+...............+2011.2012.(2013-2010)
3S=1.2.3+2.3.4-1.2.3+...............+2011.2012.2013-2010.2011.2012
3S=2011.2012.2013
S=2011.2012.2013:3
S=2714954572
A = 1.2+2.3+3.4+.....+2011.2012
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ....... + 2011.2012.3
=> 3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ........ + 2011.1012.(2013-2010)
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ........... + 2011.2012.2013 - 2010.2011.2012
=> 3A = (1.2.3 + 2.3.4 + 3.4.5 + ........ + 2011.2012.2013) - (1.2.3 + 2.3.4 + 3.4.5 + ........ + 2010.2011.2012)
=> 3A = 2011.2012.2013
=> A = \(\frac{2011\cdot2012\cdot2013}{3}\)
Đặt S=1.2+2.3+.........+2011.2012
3S=1.2.3+2.3.(4-1)+...........+2011.2012.(2013-2010)
3S=1.2.3+2.3.4-1.2.3+...........+2011.2012.2013-2010.2011.2012
3S=2011.2012.2013
S=2011.2012.2013:3
S=2714954572
Đặt A = 1.2 + 2.3 + 3.4 + ... + 2011.2012
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 2011.2012.3
=> 3A = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 2011.2012.(2013 - 2010)
=> 3A = 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 2011.2012.2013 - 2010.2011.2012
=> 3A = 2011.2012.2013
=> A = \(\frac{2011.2012.2013}{3}=2714954572\).
A= 1.2 + 2.3 + 3.4 +...+ 2011.2012
=>3A= 1.2.3 + 2.3.3 + 3.4.3 +...+ 2011.2012.3
3A= 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) +...+ 2011.2012.(2013 - 2010)
3A= (1.2.3 + 2.3.4 + 3.4.5 +...+ 2011.2012.2013) - (0.1.2 + 1.2.3 + 2.3.4 +...+ 2010.2011.2012)
3A= (2011.2012.2013) - (0.1.2)
3A= 8144863716 - 0
\(A=\frac{8144863716}{3}=2714954572\)
Vậy A= 2714954572
\(A=\dfrac{7}{1.2}+\dfrac{7}{2.3}+\dfrac{7}{3.4}+...+\dfrac{7}{2011.2012}\)
\(A=7\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2011.2012}\right)\)
\(A=7\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\right)\)
\(A=7\left(1-\dfrac{1}{2012}\right)=7.\dfrac{2011}{2012}=\dfrac{14077}{2012}\)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2011.2012}\)
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)
\(S=1-\frac{1}{2012}\)
\(S=\frac{2011}{2012}\)
Chúc bạn học tốt nha !!!
=1-1/2+1/2-1/3+1/3-1/4+...+1/2011-1/2012
= 1-1/2012
= 2011/2012
1.50+2.49+3.48+...+49.2+50.1=
= (1.50+2.50+3.50+...+50.1)-(1.2+2.3+3.4+...+49.50)
= (2500+50).50:2-41650
= 63750-41650=22100
2,
A = 1.2 + 2.3 + 3.4 + ... + 2011.2012
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 2011.2012.3
3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 2011.2012.(2013 - 2010)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 2011.2012.2013 - 2010.2011.2012
3A = 2011.2012.2013
A = 2011.2012.2013 : 3
A = 2714954572
Cách 1:
Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó:
Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2
a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
…………………..
an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)
Cộng từng vế của các đẳng thức trên ta có:
3(a1 + a2 + … + an) = n(n + 1)(n + 2)
Cách 2: Ta có
3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2)
* Tổng quát hoá ta có:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …
Ta dễ dàng chứng minh công thức trên như sau:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)