Cho \(a;b\ge0\). CMR: \(a^3+b^3\ge a^2b+ab^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
Ta có:
Vì (a-b)2+ab\(\ge\)ab
=>(a+b)[(a-b)2+ab]\(\ge\)ab(a+b)
=>a3+b3\(\ge\)a2b+ab2 (đpcm)
Bạn đọc lại xem hợp lí chưa, mình ko chắc lắm
Ta có:
\(a^3+b^3\ge a^2b+ab^2\)
<=> \(\left(a+b\right)\left(a^2+ab+b^2\right)\ge ab\left(a+b\right)\)
Với trường hợp a = b = 0 thì không rút gọn đc và BĐT đúng nên khi a > 0; b > 0 thì a+b>0
nên <=> \(a^2+ab+b^2\ge ab\)
<=> \(a^2+b^2\ge0\) (đúng)
Vậy BĐT được chứng minh