Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a + b = 1 nên \(a^3+b^3+ab=\left(a+b\right)\left(a^2-ab+b^2\right)+ab=a^2+b^2\)
Lại có \(a^2+b^2=a^2+\left(1-a\right)^2=2a^2-2a+1\)
\(2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Vậy nên \(a^3+b^3+ab\ge\frac{1}{2}\)
Dấu bằng xảy ra khi \(a=b=\frac{1}{2}\)
Ta có:
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
\(\Leftrightarrow\left(a^2-ab+b^2\right)+ab\ge\frac{1}{2}\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)+ab\ge\frac{1}{2}\)
\(\Leftrightarrow a^3+b^3+ab\ge\frac{1}{2}\)
Dấu = xảy ra khi \(a=b=\frac{1}{2}\)
<=>\(a^2\left(a-b\right)-b^2\left(a-b\right)\)>=0
<=>\(\left(a-b\right)\left(a^2-b^2\right)\)>=0
<=>\(\left(a-b\right)^2\left(a+b\right)\)>=0
Vì \(\left(a-b\right)^2\)>=0
<=>\(\left(a-b\right)^2\left(a+b\right)\)>=0 (đpcm)
Vì \(a,b\ge0\)nên
+ \(a+b\ge0\)(1)
+ \(\left(a-b\right)^2\ge0\)(2)
Nhân vế với vế của 1 và 2 , ta được :
\(\left(a+b\right)\left(a-b\right)^2\ge0\Leftrightarrow\left(a+b\right)\left(a^2-ab-ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab.\left(a+b\right)\ge0\)
\(\Leftrightarrow a^3+b^3\ge a^2b+ab^2\)
Ý 3 bạn bỏ dòng áp dụng....ta có nhé
\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
\(\Leftrightarrow\left(\frac{a^2}{4}-2.\frac{a}{2}b+b^2\right)+\left(\frac{a^2}{4}-2.\frac{a}{2}c+c^2\right)+\)\(\left(\frac{a^2}{4}-2.\frac{a}{d}d+d^2\right)+\frac{a^2}{4}\ge0\forall a;b;c;d\)
\(\Leftrightarrow\left(\frac{a}{2}-b\right)+\left(\frac{a}{2}-c\right)+\)\(\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\forall a;b;c;d\)( luôn đúng )
Dấu " = " xảy ra <=> a=b=c=d=0
6) Sai đề
Sửa thành:\(x^2-4x+5>0\)
\(\Leftrightarrow\left(x-2\right)^2+1>0\)
7) Áp dụng BĐT AM-GM ta có:
\(a+b\ge2.\sqrt{ab}\)
Dấu " = " xảy ra <=> a=b
\(\Leftrightarrow\frac{ab}{a+b}\le\frac{ab}{2.\sqrt{ab}}=\frac{\sqrt{ab}}{2}\)
Chứng minh tương tự ta có:
\(\frac{cb}{c+b}\le\frac{cb}{2.\sqrt{cb}}=\frac{\sqrt{cb}}{2}\)
\(\frac{ca}{c+a}\le\frac{ca}{2.\sqrt{ca}}=\frac{\sqrt{ca}}{2}\)
Dấu " = " xảy ra <=> a=b=c
Cộng vế với vế của các BĐT trên ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2}=\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)
Dấu " = " xảy ra <=> a=b=c
1)\(x^3+y^3\ge x^2y+xy^2\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)
\(\Leftrightarrow x^2-xy+y^2\ge xy\) ( vì x;y\(\ge0\))
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )
\(\Rightarrow x^3+y^3\ge x^2y+xy^2\)
Dấu " = " xảy ra <=> x=y
2) \(x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)( luôn đúng )
Dấu " = " xảy ra <=> x=y
3) Áp dụng BĐT AM-GM ta có:
\(\left(a-1\right)^2\ge0\forall a\Leftrightarrow a^2-2a+1\ge0\)\(\forall a\Leftrightarrow\frac{a^2}{2}+\frac{1}{2}\ge a\forall a\)
\(\left(b-1\right)^2\ge0\forall b\Leftrightarrow b^2-2b+1\ge0\)\(\forall b\Leftrightarrow\frac{b^2}{2}+\frac{1}{2}\ge b\forall b\)
\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\)\(\forall a;b\Leftrightarrow\frac{a^2}{2}+\frac{b^2}{2}\ge ab\forall a;b\)
Cộng vế với vế của các bất đẳng thức trên ta được:
\(a^2+b^2+1\ge ab+a+b\)
Dấu " = " xảy ra <=> a=b=1
4) \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)
\(\Leftrightarrow\left[a^2-2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[b^2-2.b.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[c^2-2.c.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\ge0\forall a;b;c\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2\)\(+\left(b-\frac{1}{2}\right)^2\)\(+\left(c-\frac{1}{2}\right)^2\ge0\forall a;b;c\)( luôn đúng)
Dấu " = " xảy ra <=> a=b=c=1/2
Ta có :
\(a^3+b^3+ab=\left(a+b\right)^3-3ab\left(a+b\right)+ab=1^3-3ab+ab=1-2ab\)
\(a+b\ge2\sqrt{ab}\Rightarrow1\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le\frac{1}{2}\Rightarrow ab\le\frac{1}{4}\)
\(\Rightarrow-ab\ge\frac{-1}{4}\Rightarrow-2ab\ge-\frac{1}{2}\Rightarrow1-2ab\ge\frac{1}{2}\)
\(\Rightarrow a^3+b^3+ab\ge\frac{1}{2}\left(đpcm\right)\)
\(1,\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\Leftrightarrow x^2-2xy+y^2\ge0\))
\(\Leftrightarrow\left(x+y\right)^2\ge o\)
cau b . ta co
a4+b4\(\ge\frac{\left(a^2+b^2\right)^2}{2}\)\(\ge\)\(\frac{\frac{1}{16}}{2}\)=1/32
câu a đề phải là 12ab
Dùng BĐT cô si
\(ab\ge2\sqrt{ab}\)
\(9+ab\ge2.3\sqrt{ab}\)
\(\Rightarrow\left(a+b\right)\left(9+ab\right)\ge12ab\)
Ta có:
Vì (a-b)2+ab\(\ge\)ab
=>(a+b)[(a-b)2+ab]\(\ge\)ab(a+b)
=>a3+b3\(\ge\)a2b+ab2 (đpcm)
Bạn đọc lại xem hợp lí chưa, mình ko chắc lắm
Ta có:
\(a^3+b^3\ge a^2b+ab^2\)
<=> \(\left(a+b\right)\left(a^2+ab+b^2\right)\ge ab\left(a+b\right)\)
Với trường hợp a = b = 0 thì không rút gọn đc và BĐT đúng nên khi a > 0; b > 0 thì a+b>0
nên <=> \(a^2+ab+b^2\ge ab\)
<=> \(a^2+b^2\ge0\) (đúng)
Vậy BĐT được chứng minh