mọi người giúp tôi câu hỏi này nha
chứng minh rằng : B = 2005^3+125 chia hết cho 2010
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)\)
\(=2004.\left(2005^2+2006\right)\)\(⋮\)\(2004\)
b) \(B=2005^3+125^3=\left(2005+5\right)\left(2005^2-2005.5+5^2\right)\)
\(=2010.\left(2005^2-2005.5+5^2\right)\)\(⋮\)\(2010\)
a) \(A=2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)\)
\(=2004.\left(2005^2+2005+1\right)\) chia hết cho 2004
Áp dụng hằng đẳng thức: \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
b) \(2005^3+125=2005^3+5^3=\left(2005+5\right)\left(2005^2-2005.5+25\right)\)
\(=2010.\left(2005^2-2005.5+25\right)\) chia hết cho 2010
Áp dụng hằng đẳng thức: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
a) 20062006 - 20062005 = 20062005 x 2006 - 20062005 = 20062005 x (2006 - 1) = 20062005 x 2005 chia hết cho 2005 => 20062006 - 20062005 chia hết cho 2005.
b) 79m+1 - 79m = 79m x 79 - 79m = 79m x (79 - 1) = 79m x 78 chia hết cho 78 => 79m+1 - 79m chia hết cho 78.
c) 257 + 513 = (52)7 + 513 = 514 + 513 = 512 x 5 x (5 + 1) = 512 x 5 x 6 = 512 x 30 chia hết cho 30 => 257 + 513 chia hết cho 30.
d) 106 - 57 = (2 x 5)6 - 57 = 26 x 56 - 57 = 56 x (26 - 5) = 56 x (64 - 5) = 56 x 49 chia hết cho 49 => 106 - 57 chia hết cho 49.
e) 710 - 79 - 78 = 78 x (72 - 7 - 1) = 78 x (49 - 7 - 1) = 78 x 41 chia hết cho 41 => 710 - 79 - 78 chia hết cho 41.
f)817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 = 324 x 32 x (32 - 3 - 1) = 324 x 9 x 5 = 324 x 45 chia hết cho 45 => 817 - 279 - 913 chia hết cho 45.
\(7^{2021}+7^{2020}-7^{2019}=7^{2019}.7^2+7^1.7^{2020}-7^{2019}.1\)
\(=7^{2019}\left(7^2+7-1\right)=7^{2019}\left(49+7-1\right)=7^{2019}.55\)
Mà \(55⋮11\Leftrightarrow7^{2019}.55⋮11\)
Vậy \(7^{2021}+7^{2020}-7^{2019}⋮11\)
n^3 + 20n = n^3 - 4n + 24n
n^3 + 20n = n.(n² - 4) + 24n
n^3 + 20n = n.(n - 2).(n+2) + 24n
n = 2k
=> n^3 + 20n = 8k.(k - 1).(k+1) + 48k
ta có: k.(k-1).(k+1) là tích 3 stn liên tiếp => chia hết cho 2.3 = 6
=> 8k.(k - 1).(k+1) chia hết 8.6 = 48 => n^3 +20n chia hết cho 48.
Ta có B=20053+53
=(2005+5)(20052-2005.5+52)
=2010.(20052-2005.5+52) chia hết cho 2010 do 2010 chia hết cho 2010
hay 20053+125 chia hết cho 2010
Ta có:
\(B=2005^3+125=2005^3+5^3\)
\(B=\left(2005+5\right)^3-3.2005.5.\left(2005+5\right)\)
\(B=2010^3-2010.2005.15\)
\(B=2010\left(2010^2-2005.15\right)\) chia hết cho \(2010\)