B = 1 + 2 + 4 + 8 + 16 + ... + 1024.
Giải rõ ràng ra nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 1 + 2 + 4 + 8 + 16 + ... + 1024
2A = 2 + 4 + 6 + 8 + 16 + 32 + ... + 2048
2A - A = ( 2 + 4 + 8 + 16 + 32 + ... + 2048 ) - ( 1 + 2 + 4 + 8 + 16 + ... + 1024 )
A = 2048 - 1
A = 2047
\(A=\frac{1\cdot2+2\cdot4+3\cdot6+4\cdot8+5\cdot10}{3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20}\)
\(=>A=\frac{1\cdot2+4\cdot1\cdot2+9\cdot1\cdot2+16\cdot1\cdot2+25\cdot1\cdot2}{3\cdot4+4\cdot3\cdot4+9\cdot3\cdot4+16\cdot3\cdot4+25\cdot3\cdot4}\)
\(=>A=\frac{\left(1+4+9+16+25\right)\cdot1\cdot2}{\left(1+4+9+16+25\right)\cdot3\cdot4}=\frac{1}{6}=\frac{111111}{666666}\)
Mà \(\frac{111111}{666666}< \frac{111111}{666665}\)
\(=>A< B\)
(x+1/2)+(x+1/4)+(x+1/8)+(x+1/16)=1
<=>(x+x+x+x)+(1/2+1/4+1/8+1/16)=1
<=>4x+15/16=1
=>4x=1-15/16=1/16
=>x=1/16:4
=>x=1/64
a) \(\dfrac{2}{3}\times\dfrac{1}{4}-\dfrac{1}{3}\times\dfrac{1}{2}=\dfrac{2}{12}-\dfrac{1}{6}=\dfrac{1}{6}-\dfrac{1}{6}=\dfrac{0}{6}=0\)
b) \(\dfrac{8}{5}\times\dfrac{1}{4}-\dfrac{2}{5}\times\dfrac{1}{2}-\dfrac{1}{2}\times\dfrac{1}{5}=\dfrac{8}{20}-\dfrac{2}{10}-\dfrac{1}{10}=\dfrac{4}{10}-\dfrac{2}{10}-\dfrac{1}{10}=\dfrac{4-2-1}{10}=\dfrac{1}{10}\)
\(a,\dfrac{7}{12}+\dfrac{3}{4}\times\dfrac{2}{9}=\dfrac{7}{12}+\dfrac{1}{6}=\dfrac{7}{12}+\dfrac{2}{12}=\dfrac{9}{12}=\dfrac{3}{4}\)
\(b,\dfrac{8}{9}-\dfrac{4}{15}:\dfrac{2}{5}=\dfrac{8}{9}-\dfrac{4}{15}\times\dfrac{5}{2}=\dfrac{8}{9}-\dfrac{2}{3}=\dfrac{8}{9}-\dfrac{6}{9}=\dfrac{2}{9}\)
Đặt
\(S=1+2+4+...+2048+4096\)
\(S=1+2^1+2^2+...+2^{11}+2^{12}\)
\(2S=2+2^2+2^3+...+2^{12}+2^{13}\)
\(2S-S=\left(2+2^2+2^3+...+2^{13}\right)-\left(1+2+2^2+..+2^{12}\right)\)
\(S=2^{13}-1=8192-1=8191\)
Gọi A=1+2+4+8+16+...+1024+2048+4096
2A=2+4+8+16+32+...+2048+4096+8192
2A-A=(2+4+8+16+32+...+2048+4096+8192)-(1+2+4+8+16+...+1024+2048+4096)
A=8192-1
A=8191