Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; \(\dfrac{3}{11}\) + \(\dfrac{5}{-9}\) + \(\dfrac{4}{11}\) - \(\dfrac{4}{9}\) + \(\dfrac{3}{17}\) + \(\dfrac{15}{11}\)
= (\(\dfrac{3}{11}\) + \(\dfrac{4}{11}\) + \(\dfrac{15}{11}\)) - (\(\dfrac{5}{9}\) + \(\dfrac{4}{9}\)) + \(\dfrac{3}{17}\)
= 2 - 1 + \(\dfrac{3}{17}\)
= 1 + \(\dfrac{3}{17}\)
= \(\dfrac{20}{17}\)
c; N = \(\dfrac{\dfrac{5}{7}-\dfrac{5}{9}-\dfrac{5}{11}}{\dfrac{15}{7}+\dfrac{15}{9}+\dfrac{15}{11}}\)
Phải là - \(\dfrac{5}{7}\) chỗ tử số mới đúng em nhé!
\(B=\frac{1.2+2.4+3.6+4.8+5.10}{3.4+6.8+9.12+12.16+15.20}\)
\(B=\frac{1.2+2^2.1.2+3^21.2+4^2.1.2+5^2.1.2}{3.4+2^23.4+3^23.4+4^23.4+5^23.4}\)
\(B=\frac{2.\left(1+2^2+3^2+4^2+5^2\right)}{12\left(1+2^2+3^2+4^2+5^2\right)}\)\(\Rightarrow B=\frac{2}{12}=\frac{1}{6}\)
Câu 1:
a: \(16^4=2^{16}< 4^{16}\)
c: \(3^{25}=9\cdot3^{23}>8\cdot3^{23}\)
d: \(2^{50}=32^{10}>25^{10}=5^{20}\)
\(A=\frac{1\cdot2+2\cdot4+3\cdot6+4\cdot8+5\cdot10+6\cdot12}{3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20+18\cdot24}\)
\(A=\frac{2\cdot3\left[1\cdot2\right]+2\cdot3\left[2\cdot4\right]+2\cdot3\left[3\cdot6\right]+2\cdot3\left[4\cdot8\right]+2\cdot3\left[5\cdot10\right]}{3\cdot4\left[3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20\right]}\)
\(A=\frac{\left[3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20\right]}{2\cdot3\left[3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20\right]}=\frac{1}{2\cdot3}=\frac{1}{6}\)
Bài 46:
11: Ta có: \(-4\left|x-2\right|=-8\)
\(\Leftrightarrow\left|x-2\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=2\\x-2=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)
Vậy: x∈{0;4}
12: Ta có: \(5\left|x+2\right|=-10\cdot\left(-2\right)\)
\(\Leftrightarrow5\left|x+2\right|=20\)
\(\Leftrightarrow\left|x+2\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)
Vậy: x∈{-6;2}
13: Ta có: \(6\left|x-2\right|=18:\left(-3\right)\)
\(\Leftrightarrow6\left|x-2\right|=-6\)(1)
Ta có: \(\left|x-2\right|\ge0\forall x\)
\(\Rightarrow6\left|x-2\right|\ge0\forall x\)(2)
Ta có: -6<0(3)
Từ (1), (2) và (3) suy ra x∈∅
Vậy: x∈∅
14: Ta có:\(-7\left|x+4\right|=21:\left(-3\right)\)
\(\Leftrightarrow-7\left|x+4\right|=-7\)
\(\Leftrightarrow\left|x+4\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=1\\x+4=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\)
Vậy: x∈{-5;-3}
15: Ta có: \(4\left|x+1\right|=8\left(-2\right)-8\left(-5\right)\)
\(\Leftrightarrow4\left|x+1\right|=-16-\left(-40\right)\)
\(\Leftrightarrow4\left|x+1\right|=24\)
\(\Leftrightarrow\left|x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=6\\x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-7\end{matrix}\right.\)
Vậy: x∈{-7;5}
16: Ta có: \(3\left|x+5\right|=-9\)(4)
Ta có: |x+5|≥0∀x
⇒3|x+5|≥0∀x(5)
Ta có: -9<0(6)
Từ (4), (5) và (6) suy ra x∈∅
Vậy: x∈∅
17: Ta có: \(-8\left|x-3\right|=24-16:2\)
\(\Leftrightarrow-8\left|x-3\right|=16\)
\(\Leftrightarrow\left|x-3\right|=-2\)
mà |x-3|≥0>-2∀x
nên x∈∅
Vậy: x∈∅
18: Ta có: \(-3\left|x+6\right|=6\cdot2-9\)
\(\Leftrightarrow-3\left|x+6\right|=3\)
\(\Leftrightarrow\left|x+6\right|=-1\)
mà |x+6|≥0>-1∀x
nên x∈∅
Vậy: x∈∅
19: Ta có: \(5-\left|x+7\right|=4\)
\(\Leftrightarrow\left|x+7\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x+7=-1\\x+7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=-6\end{matrix}\right.\)
Vậy: x∈{-8;-6}
20: Ta có: \(12-\left|x+8\right|=10\)
\(\Leftrightarrow\left|x+8\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+8=2\\x+8=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=-10\end{matrix}\right.\)
Vậy: x∈{-10;-6}
\(A=\frac{1\cdot2+2\cdot4+3\cdot6+4\cdot8+5\cdot10}{3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20}\)
\(=>A=\frac{1\cdot2+4\cdot1\cdot2+9\cdot1\cdot2+16\cdot1\cdot2+25\cdot1\cdot2}{3\cdot4+4\cdot3\cdot4+9\cdot3\cdot4+16\cdot3\cdot4+25\cdot3\cdot4}\)
\(=>A=\frac{\left(1+4+9+16+25\right)\cdot1\cdot2}{\left(1+4+9+16+25\right)\cdot3\cdot4}=\frac{1}{6}=\frac{111111}{666666}\)
Mà \(\frac{111111}{666666}< \frac{111111}{666665}\)
\(=>A< B\)