Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{512}-\frac{1}{1024}\)
=1-1/1024
=1023/1024
1+2+4+8+16+32+64+128+256+512+1024+2048
=1+(2+8)+(4+16)+(32+128)+(64+256)+(512+2048)+1024
=1+10+20+160+320+2560+1024
=4095
1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512 + 1024 + 2048 = 4095
k nha công chúa nụ cười =_= ^_^
C = 1 + 2 + 4 + 8 + ... + 512 + 1024
2C = 2 + 4 + 8 + 16 + ... + 1024 + 2048
2C - C = (2 + 4 + 8 + 16 + ... + 1024 + 2048) - (1 + 2 + 4 + 8 + ... + 512 + 1024)
C = 2048 - 1
C = 2047
Từ 1 đến 9 có 9 chữ số .
Từ 10 đến 60 có :
( 60 - 10 ) : (11 - 10 ) + 1 = 51 (số) . Vì số 10 đến 50 có 2 chữ số nên dãy trên có 51 x 2 = 102 ( chữ số )
Vậy sẽ còn lại :
132 - 9 - 102 = 21 ( chữ số )
Từ 60 đến 70 có :
( 70 - 60 ) : ( 11 - 10 ) + 1 = 11 ( số ) . Sẽ có 11 số nên 11 x 2 = 22 ( chữ số )
Ta đã dư 1 chữ số và chữ số cuối cùng là 0 . Nên số thứ 132 sẽ là 7 .
\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{512}-\frac{1}{1024}\)
\(A=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^9}-\frac{1}{2^{10}}\)
\(2A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+...+\frac{1}{2^8}-\frac{1}{2^9}\)
\(3A=1-\frac{1}{2^{10}}< 1\)
\(\Rightarrow A< \frac{1}{3}\)
Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)
Đặ A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)(1)
=> 2A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\)(2)
Lấy (2) trừ (1) theo vế ta có :
2A - A = \(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)
=> A = \(1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{20}}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}\)
\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^9}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{10}}=\frac{1023}{1024}\)
Đặt A = 1 + 2 + 4 + 8 + 16 + ... + 1024
2A = 2 + 4 + 6 + 8 + 16 + 32 + ... + 2048
2A - A = ( 2 + 4 + 8 + 16 + 32 + ... + 2048 ) - ( 1 + 2 + 4 + 8 + 16 + ... + 1024 )
A = 2048 - 1
A = 2047