Chứng minh rằng: 313^5x299-313^6x35 chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(313^5.299-313^6.36\)
\(=313^5.299-313^636\)
\(=313^5\left(299-313.36\right)\)
Ta có:
Ta có: \(299\equiv5\left(mod7\right)\)
\(313\equiv5\left(mod7\right)\)
\(36\equiv1\left(mod7\right)\)
=> \(299-313.36\equiv5-5.1=0\left(mod7\right)\)
=> \(299-313.36⋮7\)
=> \(313^5.299-313^6.36⋮7\)
\(313^5.229-313^6.36\)
\(=313^5\left(229-313.36\right)=313^5.\left(-11039\right)=-313^5.1577.7⋮7\)
(3133.299 - 3136.36) = [3133.(299 - 36)] = 3133.263 = 8064710111 , mà 8064710111 : 7 = 1152101444 => (3133.299 - 3136.36) chia hết cho 7.
(3133.299 - 3136.36) = [3133.(299 - 36)] = 3133.263 = 8064710111 , mà 8064710111 : 7 = 1152101444 => (3133.299 - 3136.36) chia hết cho 7.
Mình ko chắc là đúng
(3133.299 - 3136.36) = [3133.(299 - 36)] = 3133.263 = 8064710111 , mà 8064710111 : 7 = 1152101444 => (3133.299 - 3136.36) chia hết cho 7.
theo mình tính thì cái này không chia hết cho 7 đâu