Tìm số chinh phương n có 3 chữ số . nchia hết cho 5. n chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
goi thương cuối cung là x , số cần tìm là ab5
thương tìm dc cộng 9 thì chia hết cho 9 nên thương dó có dạng 9x-9
thương tìm dược cộng 8 thì chia hết cho 8 nên thương có dang \(\left(9x-9\right).8-8\)
số dó cong thêm 7 thì dc 1 số chia hết cho 7 nên \(\left[\left(9x-9\right).8-8\right].7-7=\)ab5
suy ra 504x-567=ab5 dk x<=3)
nen 504x có chữ só tận cùng =2 suy ra x= 3
nên số cần tìm 945
nguồn bạn cùng lớp
Tìm chữ số x, sao cho:178x chia hết cho 2 và chia 5 dư 3.
Trả lời: x =
gọi số cần tìm la abc
Ta co
c chia het cho 2
c chia 5 du 3
=>c=8
Ta có số ab8
=>a+b+8 chia het cho 9
=>a+b=1
=>a=1
b=0
vậy số cần tìm la 108
âu 1:
Gọi số cần tìm là AB (với A và B là các chữ số). Theo đề bài, ta có phương trình:
AB = 2 × A × B
Để giải phương trình này, ta thực hiện các bước sau:
- Ta có A và B đều là các chữ số từ 1 đến 9, do đó AB là một số có hai chữ số từ 10 đến 99.
- Vì AB = 2 × A × B, nên A và B đều khác 0. Do đó, ta có thể giả sử A > B mà không mất tính tổng quát.
- Khi đó, ta có A < 5 (nếu A ≥ 5 thì AB ≥ 50, vượt quá giới hạn của số có hai chữ số).
- Với mỗi giá trị của A từ 1 đến 4, ta tính được giá trị tương ứng của B bằng cách chia AB cho 2A. Nếu B là một số nguyên từ 1 đến 9 thì ta đã tìm được một giá trị của AB.
Kết quả là AB = 16 hoặc AB = 36.
Vậy có hai số thỏa mãn điều kiện đề bài là 16 và 36.
Câu 2:
Số cần tìm có dạng ABC, với A, B, C lần lượt là chữ số hàng trăm, chục và đơn vị. Theo đề bài, ta có hai điều kiện:
- ABC chia hết cho 9.
- A + C chia hết cho 5.
Để tìm số lớn nhất thỏa mãn hai điều kiện này, ta thực hiện các bước sau:
- Vì ABC chia hết cho 9, nên tổng các chữ số của ABC cũng chia hết cho 9. Do đó, ta có A + B + C = 9k (với k là một số nguyên dương).
- Từ điều kiện thứ hai, ta suy ra A + C là một trong các giá trị 5, 10 hoặc 15.
- Nếu A + C = 5 thì B = 4 và C = 1. Như vậy, ta có ABC = 401, không chia hết cho 9.
- Nếu A + C = 10 thì B = 0 và tổng các chữ số của ABC là 10, do đó ABC chia hết cho 9. Ta có ABC = 990.
- Nếu A + C = 15 thì B = 0 và tổng các chữ số của ABC là 18, do đó ABC chia hết cho 9. Ta có ABC = 999.
Vậy số lớn nhất thỏa mãn điều kiện đề bài là 999.
Câu 3:
A. Giả sử hai số tự nhiên a và b có tổng không chia hết cho 2. Khi đó, a và b có cùng hay khác tính chẵn lẻ. Nếu a và b đều là số lẻ thì tổng của chúng là một số chẵn, mâu thuẫn với giả thiết. Do đó, a và b phải cùng tính chẵn. Khi đó, ta có thể viết a = 2m và b = 2n, với m và n là các số tự nhiên. Từ đó, ta có:
ab = 2m × 2n = 2(m + n)
Vì m + n là một số tự nhiên, nên ab chia hết cho 2.
B. Số 2006 không thể là tích của ba số tự nhiên liên tiếp vì ba số tự nhiên liên tiếp phải có dạng (n - 1), n, (n + 1) hoặc n
Gọi số phải tìm là abcdeghik
Ta có ab chia hết cho 2, để nhỏ nhất ta chọn ab = 12
Ta có 12c chia hết cho 3, để nhỏ nhất ta chọn c = 0
Ta có 120d chia hết cho 4, để nhỏ nhất ta chọn d = 0
Ta có 1200e chia hết cho 5, để nhỏ nhất ta chọn e = 0
Ta có 12000g chia hết cho 6, để nhỏ nhất ta chọn g = 0
Ta có 120000h chia hết cho 7 nên h = 3
Ta có 1200003i chia hết cho 8 nên i = 2
Ta có 12000032k chia hết cho 9 nên k = 1
Vậy, số đó là 120000321
gọi số cần tìm là ab ( 0<a<10 )
theo đề ra , ta có ab = 10a+b
10a+b chia 2 dư 1
10a+b chia 5 dư 2
=> b = 7
ta có 10a+7 chia hết cho 9 => a+7 chia hết cho 9
=> a=2
vậy số cần tìm là 27
#Học-tốt
số tự nhiên chia 5 dư 3 có tận cùn là 3 hoặc 8 mà số đó chia hết cho 2 nên số đó là 88
Số chính phương chia hết cho 5 thì chia hết cho 25.
Ta có: 25 x 9 = 225.
Bây giờ, ta nhân 225 với từng số chính phương P từ nhỏ đến lớn: 1; 4 ;9 ;..
225*1 = 225 là 1 số chính phương TMĐK
225*4 = 900 là 1 số chính phương TMĐK
Nếu P >=9 thì số chính phương cần tìm có hơn 4 chữ số.
Vậy, có 2 số chính phương có 3 chữ số mà chia hết cho 5 và 9 là: 225 và 900.