K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2022

\(y-6=\frac{2}{3}\)

\(y=\frac{2}{3}+6\)

\(y=\frac{2}{3}+\frac{6}{1}\)

\(y=\frac{2}{3}+\frac{18}{3}\)

\(y=\frac{20}{3}\)

21 tháng 8 2023

1/

\(x^2+y^2=\left(x-y\right)^2+2xy=2^2+2.1=6\)

2/

\(x^3-y^3=\left(x-y\right)\left(x^2+y^2+xy\right)=2\left(6+1\right)=14\)

3/

\(x^2-y^2=\left(x-y\right)\left(x+y\right)=2\left(x+y\right)\) (3)

Ta có

\(x^2+y^2=\left(x+y\right)^2-2xy=\left(x+y\right)^2-2=6\)

\(\Rightarrow\left(x+y\right)^2=8\Rightarrow\left(x+y\right)=\pm2\sqrt{2}\) Thay vào (3)

\(\Rightarrow x^2-y^2=2.\pm2\sqrt{2}=\pm4\sqrt{2}\)

4/

\(x^6-y^6=\left(x^3-y^3\right)\left(x^3+y^3\right)\) (4)

Ta có

\(x^3-y^3=14\) (cmt)

Ta có

\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right).5=\pm2\sqrt{2}.5=\pm10\sqrt{2}\)

\(\Rightarrow x^6-y^6=\pm10\sqrt{2}.14=\pm140\sqrt{2}\)

17 tháng 7

9(a-b)^2 - 4(x-y)^2

 

16 tháng 9 2017

mình chẳng hiểu gì cả X_X

16 tháng 9 2017

Chả hiểu đây là dạng toán gì

a: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+1+1}{x+1}+\dfrac{2}{y-2}=6\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)

=>x+1=1 và y-2=1/2

=>x=0 và y=5/2

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x-2y}=\dfrac{1}{2}-\dfrac{1}{18}=\dfrac{9}{18}-\dfrac{1}{18}=\dfrac{8}{18}=\dfrac{4}{9}\\\dfrac{2}{2x-y}=\dfrac{1}{18}+\dfrac{1}{x-2y}\end{matrix}\right.\)

=>x-2y=9 và 2/2x-y=1/18+1/9=1/18+2/18=3/18=1/6

=>x-2y=9 và 2x-y=12

=>x=5; y=-2

c: \(\Leftrightarrow\left\{{}\begin{matrix}10\left|x-6\right|+15\left|y+1\right|=25\\10\left|x-6\right|-8\left|y+1\right|=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}23\left|y+1\right|=23\\\left|x-6\right|=1\end{matrix}\right.\)

=>|x-6|=1 và |y+1|=1

=>\(\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)

22 tháng 8 2017

hình như sai đề

24 tháng 8 2018

Đáp án: B (có thể kiểm tra trực tiếp)

21 tháng 7 2016

Hằng đẳng thức bậc cao sử dụng nhị thức newton