so sánh \(\sqrt{2013}-\sqrt{2014}va\sqrt{2014}-\sqrt{2015}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt \(\frac{\sqrt{a}+\sqrt{b}}{2}\le\sqrt{\frac{a+b}{2}}\) :
Xét : \(N-M=2\sqrt{2014}-\left(\sqrt{2015}+\sqrt{2013}\right)\)
Theo bđt trên thì \(\frac{\sqrt{2013}+\sqrt{2015}}{2}\le\sqrt{\frac{2013+2015}{2}}\Leftrightarrow\sqrt{2013}+\sqrt{2015}\le2\sqrt{2014}\)
\(\Rightarrow N-M>0\Rightarrow N>M\)
1) Ta có bđt sau : \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\) (bạn tự c/m)
Áp dụng : \(\frac{\sqrt{2005}+\sqrt{2007}}{2}< \sqrt{\frac{2005+2007}{2}}\)
\(\Rightarrow\sqrt{2005}+\sqrt{2007}< 2\sqrt{2006}\)
2) Xét : \(A-B=2\sqrt{2014}-\left(\sqrt{2013}+\sqrt{2015}\right)\)
Theo câu 1) , ta dễ dàng c/m được \(2\sqrt{2014}>\sqrt{2013}+\sqrt{2015}\)
Do đó A - B > 0 => A > B
2) Bình phương 2 vế ta có:
\(A^2=2014-2013=1\)
\(B^2=2015-2014=1\)
=>A=B
Ta có: \(\sqrt{2015}-\sqrt{2014}=\dfrac{2015-2014}{\sqrt{2015}+\sqrt{2014}}>\dfrac{2016-2015}{\sqrt{2016}+\sqrt{2015}}=\sqrt{2016}-\sqrt{2015}\)
Ta có: √2015−√2014=2015−2014√2015+√2014>2016−2015√2016+√2015=√2016−√2015
Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014
\(\frac{2014}{\sqrt{2015}}+\frac{2015}{\sqrt{2014}}=\frac{2015-1}{\sqrt{2015}}+\frac{2014+1}{\sqrt{2014}}\)
= \(\sqrt{2014}+\sqrt{2015}+\frac{1}{\sqrt{2014}}-\frac{1}{\sqrt{2015}}>\sqrt{2014}+\sqrt{2015}\)
bình từng cái @