K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2016

Ta có :

\(4a=6b=3c\)

\(\Rightarrow\frac{4a}{24}=\frac{6b}{24}=\frac{3c}{24}\)

\(\Rightarrow\frac{a}{6}=\frac{b}{4}=\frac{c}{8}\)

Ap dụng tính chất tỉ số băng nhau , ta có:

\(\frac{a}{6}=\frac{b}{4}=\frac{c}{8}=\frac{a+b+c}{6+4+8}=\frac{54}{18}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{6}=3\\\frac{b}{4}=3\\\frac{c}{8}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=3\times6=18\\b=3\times4=12\\c=3\times8=24\end{cases}}\)

7 tháng 6 2016

4a = 6b = 3c <=> \(\frac{a}{\frac{1}{4}}=\frac{b}{\frac{1}{6}}=\frac{c}{\frac{1}{3}}=\frac{a+b+c}{\frac{1}{4}+\frac{1}{6}+\frac{1}{3}}=\frac{54}{\frac{3}{4}}=72\)

=> a = 72 : 4 = 18 ; b = 72 : 6 = 12 ; c = 72 : 3 = 24.

9 tháng 4 2021

a2 + b2 = 4a + 6b - 9 

⇔ (a - 2)2 + (b - 3)2 = 4

Đây là phương trình của đường tròn (C) có tâm là I (2;3) và bán kính bằng 2

(d) : 3c + 4d - 1 = là phương trình đường thẳng

Gọi A (a;b) và B (b; d) ⇒ AB = \(\sqrt{\left(a-c\right)^2+\left(b-d\right)^2}\)

Với A nằm trên đường tròn (C) và B nằm trên d

Vẽ đường tròn (C) : (x - 2)2 + (y - 3)2 = 4 và đường thẳng 
3x + 4y - 1 = 0 trên cùng một hệ trục tọa độ ta thấy chúng không có điểm chung

Cần tìm tọa độ của A và B để AB đạt Min

Từ I kẻ đường thẳng vuông góc với (d) tại N, cắt đường tròn (C) tại M, ta tìm được tọa độ MN

Do MN là khoảng cách ngắn nhất từ một điểm trên (C) đến (d)

Dấu "=" xảy ra khi A trùng M, B trùng N => a,b,c,d

Đoạn này lười quá nên tự làm nha

12 tháng 5 2019

bu-nhi-a vào bn ak

3 tháng 11 2019

\(3\left(4a^2+6b^2+3c^2\right)-4\left(a+b+c\right)^2\)

\(=\frac{\left(4a-2b-2c\right)^2+6\left(2b-c\right)^2}{16}\ge0\)

Rồi làm nốt.

3 tháng 11 2019

Sửa lại tí: 

\(=\frac{\left(4a-2b-2c\right)^2+6\left(2b-c\right)^2}{2}\ge0\) nha!

Do đó \(4a^2+6b^2+3c^2\ge\frac{4}{3}\left(a+b+c\right)^2=12\)

Vậy...

AH
Akai Haruma
Giáo viên
28 tháng 5 2019

Lời giải:

Bài này bạn sử dụng PP chọn điểm rơi:

Áp dụng BĐT AM-GM:

\(4a^2+4\geq 8a\)

\(6b^2+\frac{8}{3}\geq 8b\)

\(3c^2+\frac{16}{3}\geq 8c\)

Cộng theo vế các BĐT trên thu được:

\(4a^2+6b^2+3c^2+12\geq 8(a+b+c)\)

\(\Leftrightarrow A\geq 8.3-12=12\)

Vậy \(A_{\min}=12\Leftrightarrow (a,b,c)=(1,\frac{2}{3}, \frac{4}{3})\)

29 tháng 12 2017

phá ngoặc lun nà

+4a-5c+3b-2b+a-7c-7b+3c-5a=(4a+a-5a)+(3b-2b-7b)+(-5c-7c+3c)=0-6b-9c=-9c-6b

-2a+3c-b-5b-4c+12a+9b+4c-4a-6a-3b-3c+d=(-2a+12a-4a-6a)+(-b-5b+9b-3b)+(3c-4c+4c-3c)+d=0+0+0+0+d=d

NV
13 tháng 5 2020

\(3^2=\left(a+b+c\right)^2=\left(\frac{1}{2}.2a+\frac{1}{\sqrt{6}}.\sqrt{6}b+\frac{1}{\sqrt{3}}.\sqrt{3}c\right)^2\)

\(\Rightarrow9\le\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{3}\right)\left(4a^2+6b^2+3c^2\right)\)

\(\Rightarrow4a^2+6b^2+3c^2\ge\frac{9}{\frac{1}{4}+\frac{1}{6}+\frac{1}{3}}=12\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a+b+c=3\\4a=6b=3c\end{matrix}\right.\) \(\Rightarrow\left(a;b;c\right)=\left(1;\frac{2}{3};\frac{4}{3}\right)\)

NV
4 tháng 1 2019

\(S=\dfrac{a^2}{\dfrac{1}{4}}+\dfrac{b^2}{\dfrac{1}{6}}+\dfrac{c^2}{\dfrac{1}{3}}\ge\dfrac{\left(a+b+c\right)^2}{\dfrac{1}{4}+\dfrac{1}{6}+\dfrac{1}{3}}=12\)

\(\Rightarrow S_{min}=12\) khi \(\left\{{}\begin{matrix}4a=6b=3c\\a+b+c=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=\dfrac{2}{3}\\c=\dfrac{4}{3}\end{matrix}\right.\)