Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^2=\left(a+b+c\right)^2=\left(\frac{1}{2}.2a+\frac{1}{\sqrt{6}}.\sqrt{6}b+\frac{1}{\sqrt{3}}.\sqrt{3}c\right)^2\)
\(\Rightarrow9\le\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{3}\right)\left(4a^2+6b^2+3c^2\right)\)
\(\Rightarrow4a^2+6b^2+3c^2\ge\frac{9}{\frac{1}{4}+\frac{1}{6}+\frac{1}{3}}=12\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a+b+c=3\\4a=6b=3c\end{matrix}\right.\) \(\Rightarrow\left(a;b;c\right)=\left(1;\frac{2}{3};\frac{4}{3}\right)\)
\(N=4a^2+4+6b^2+\frac{8}{3}+3c^2+\frac{16}{3}-12\)
\(N\ge2\sqrt{16a^2}+2\sqrt{16b^2}+2\sqrt{16c^2}-12=8\left(a+b+c\right)-12=12\)
\(\Rightarrow N_{min}=12\) khi \(\left\{{}\begin{matrix}a=1\\b=\frac{2}{3}\\c=\frac{4}{3}\end{matrix}\right.\)
bài này nói lại 1 lần k đến lớp 9 tầm lớp 7 nhé!
vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
áp dụng tc dãy tỉ số = nhau
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
=> a=b=c
thay b=a ; c=a
=>bt P= \(\frac{4a+6a+2017a}{4a-6a-2017a}\)
đến đây tự làm típ!
\(P=2\Sigma a+\Sigma\dfrac{1}{a}=\Sigma a+\Sigma a+\Sigma\dfrac{1}{a}\ge3.\sqrt[3]{\left(\Sigma a\right)^2.\Sigma\dfrac{1}{a}}\)
\(Q=\left(\Sigma a\right)^2.\Sigma\dfrac{1}{a}=\left(3+2\Sigma ab\right).\Sigma\dfrac{1}{a}=3\Sigma\dfrac{1}{a}+4\Sigma a+2\Sigma\dfrac{ab}{c}\ge3\Sigma\dfrac{1}{a}+6\Sigma a=3\left(\Sigma\dfrac{1}{a}+2\Sigma a\right)=3P\)\(\Rightarrow\)\(P\ge3\sqrt[3]{3P}\) \(\Leftrightarrow P^3\ge81P\Leftrightarrow P^2\ge81\left(P>0\right)\Leftrightarrow P\ge9\)
" = " \(\Leftrightarrow a=b=c=1\)
Vì $\large a,b,c \in\mathbb{N^*}$ và $\large a^2+b^2+c^2=3\Rightarrow \left\{\begin{matrix} a<\sqrt{3} & \\ b<\sqrt{3} & \\ c<\sqrt{3} & \end{matrix}\right.$
Ta chứng minh bất đẳng thức phụ sau:
Với $0 <x<\sqrt{3}$ thì $2x+\frac{1}{x} \ge x^2.\frac{1}{2}+\frac{5}{2}(*)$
Thật vậy $(*)$ $\large \Leftrightarrow (x-2)(x-1)^2 \le0$
Do $\large x<\sqrt{3}\Leftrightarrow x<2\Leftrightarrow (x-2)(x-1)^2<0$ (Luôn đúng)
Do đó bất đẳng thức được chứng minh
Dấu $"="$ xảy ra khi $x=1$
Trở lại bài toán:
Áp dụng BĐT $(*)$ ta được:
$\large 2a+\frac{1}{a}+2b+\frac{1}{b}+2c+\frac{1}{c}\ge\frac{1}{2}(a^2+b^2+c^2)+\frac{15}{2}=9$
Do $a^2+b^2+c^2=3$
Vậy $GTNN=9$
Dấu $"="$ xảy ra khi: $a=b=c=1$
\(3\left(4a^2+6b^2+3c^2\right)-4\left(a+b+c\right)^2\)
\(=\frac{\left(4a-2b-2c\right)^2+6\left(2b-c\right)^2}{16}\ge0\)
Rồi làm nốt.
Sửa lại tí:
\(=\frac{\left(4a-2b-2c\right)^2+6\left(2b-c\right)^2}{2}\ge0\) nha!
Do đó \(4a^2+6b^2+3c^2\ge\frac{4}{3}\left(a+b+c\right)^2=12\)
Vậy...