1) cho x + y + z =0 và xy + yz + zx = . cmr: x=y=z
2) cmr: biểu thức sau viết được dưới dạng tổng bình phương của 2 biểu thức: x^2 +2(x+1)^2 + 3(x+2)^2 + 4(x+3)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
-8x^6-12x^4y-6x^2y^2-y^3
=-(8x^6+12x^4y+6x^2y^2+y^3)
=-(2x^2+y)^3
3:
=(1/3)^2-(2x-y)^2
=(1/3-2x+y)(1/3+2x-y)
a/
Với mọi số thực x;y;z ta luôn có:
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2yz\ge3xy+3yz+3zx\)
\(\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\) (đpcm)
b/
\(M=2\left(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}\right)+\frac{1}{xy+yz+zx}\)
\(M\ge2.\frac{9}{x^2+y^2+z^2+xy+yz+zx+xy+yz+zx}+\frac{1}{\frac{\left(x+y+z\right)^2}{3}}\)
\(M\ge\frac{18}{\left(x+y+z\right)^2}+\frac{3}{\left(x+y+z\right)^2}=\frac{21}{\left(x+y+z\right)^2}=21\)
\(M_{min}=21\) khi \(x=y=z=\frac{1}{3}\)
`B=(x/2+y)^3-6(x/2+y)^2z + 6(x+2y)z^2-8z^3`
`=(x/2+y)^3 - 3. (x/2+y)^2 . 2z + 3. (x/2+y) . (2z)^2 - (2z)^3`
`=(x/2+y-2z)^3`
Sửa đề: Δ\(B=\left(\dfrac{x}{2}+y\right)^3-6\left(\dfrac{x}{2}+y\right)^2z+12\left(x+2y\right)\cdot z^2-8z^3\)
Ta có: \(B=\left(\dfrac{x}{2}+y\right)^3-6\left(\dfrac{x}{2}+y\right)^2z+12\left(x+2y\right)\cdot z^2-8z^3\)
\(=\left(\dfrac{1}{2}x+y\right)^2-3\cdot\left(\dfrac{1}{2}x+y\right)^2\cdot2z+3\cdot\left(\dfrac{1}{2}x+y\right)\cdot\left(2z\right)^2-\left(2z\right)^3\)
\(=\left(\dfrac{1}{2}x+y-2z\right)^3\)
đề dài v~
1.
a) \(f\left(x\right)=5x^2-2x+1\)
\(5f\left(x\right)=25x^2-10x+5\)
\(5f\left(x\right)=\left(25x^2-10x+1\right)+4\)
\(5f\left(x\right)=\left(5x-1\right)^2+4\)
Mà \(\left(5x-1\right)^2\ge0\)
\(\Rightarrow5f\left(x\right)\ge4\)
\(\Leftrightarrow f\left(x\right)\ge\frac{4}{5}\)
Dấu " = " xảy ra khi :
\(5x-1=0\Leftrightarrow x=\frac{1}{5}\)
Vậy ....
b) \(P\left(x\right)=3x^2+x+7\)
\(3P\left(x\right)=9x^2+3x+21\)
\(3P\left(x\right)=\left(9x^2+3x+\frac{1}{4}\right)+\frac{83}{4}\)
\(3P\left(x\right)=\left(3x+\frac{1}{2}\right)^2+\frac{83}{4}\)
Mà \(\left(3x+\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow3P\left(x\right)\ge\frac{83}{4}\)
\(\Leftrightarrow P\left(x\right)\ge\frac{83}{12}\)
Dấu "=" xảy ra khi :
\(3x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{6}\)
Vậy ...
c) \(Q\left(x\right)=5x^2-3x-3\)
\(5Q\left(x\right)=25x^2-15x-15\)
\(\Leftrightarrow5Q\left(x\right)=\left(25x^2-15x+\frac{9}{4}\right)-\frac{69}{4}\)
\(\Leftrightarrow5Q\left(x\right)=\left(5x-\frac{3}{2}\right)^2-\frac{69}{4}\)
Mà \(\left(5x-\frac{3}{2}\right)^2\ge0\)
\(\Rightarrow5Q\left(x\right)\ge\frac{-69}{4}\)
\(\Leftrightarrow Q\left(x\right)\ge-\frac{69}{20}\)
Dấu "=" xảy ra khi :
\(5x-\frac{3}{2}=0\Leftrightarrow x=0,3\)
Vậy ...
2.
a) \(f\left(x\right)=-3x^2+x-2\)
\(-3f\left(x\right)=9x^2-3x+6\)
\(-3f\left(x\right)=\left(9x^2-3x+\frac{1}{4}\right)+\frac{23}{4}\)
\(-3f\left(x\right)=\left(3x-\frac{1}{2}\right)^2+\frac{23}{4}\)
Mà \(\left(3x-\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow-3f\left(x\right)\ge\frac{23}{4}\)
\(\Leftrightarrow f\left(x\right)\le\frac{23}{12}\)
Dấu "=" xảy ra khi :
\(3x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{6}\)
Vậy ...
b) \(P\left(x\right)=-x^2-7x+1\)
\(-P\left(x\right)=x^2+7x-1\)
\(-P\left(x\right)=\left(x^2+7x+\frac{49}{4}\right)-\frac{53}{4}\)
\(-P\left(x\right)=\left(x+\frac{7}{2}\right)^2-\frac{53}{4}\)
Mà \(\left(x+\frac{7}{2}\right)^2\ge0\)
\(\Rightarrow-P\left(x\right)\ge-\frac{53}{4}\)
\(\Leftrightarrow P\left(x\right)\le\frac{53}{4}\)
Dấu "=" xảy ra khi :
\(x+\frac{7}{2}=0\Leftrightarrow x=-\frac{7}{2}\)
Vậy ...
c) \(Q\left(x\right)=-2x^2+x-8\)
\(-2Q\left(x\right)=4x^2-2x+16\)
\(-2Q\left(x\right)=\left(4x^2-2x+\frac{1}{4}\right)+\frac{63}{4}\)
\(-2Q\left(x\right)=\left(2x-\frac{1}{2}\right)^2+\frac{63}{4}\)
Mà : \(\left(2x-\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow-2Q\left(x\right)\ge\frac{63}{4}\)
\(\Leftrightarrow Q\left(x\right)\le-\frac{63}{8}\)
Dấu "=" xảy ra khi :
\(2x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}\)
Vậy ...
Áp dụng bđt AM-GM ta có
\(P\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2.\left(yz+1\right)^2.\left(zx+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=A\)
Ta có \(A=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{zx+1}{z}\right)}=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)
Áp dụng bđt AM-GM ta có
\(A\ge3\sqrt[3]{8\sqrt{\frac{xyz}{xyz}}}=3.2=6\)
\(\Rightarrow P\ge6\)
Dấu "=" xảy ra khi x=y=z=\(\frac{1}{2}\)
Làm tiếp bài ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★ chớ hình như bị ngược dấu ó.Do mình gà nên chỉ biết cô si mù mịt thôi ạ
\(3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)
\(=3\sqrt[3]{\left(y+\frac{1}{4x}+\frac{1}{4x}+\frac{1}{4x}+\frac{1}{4x}\right)\left(z+\frac{1}{4y}+\frac{1}{4y}+\frac{1}{4y}+\frac{1}{4y}\right)\left(x+\frac{1}{4z}+\frac{1}{4z}+\frac{1}{4z}+\frac{1}{4z}\right)}\)
\(\ge3\sqrt[3]{5\sqrt[5]{\frac{y}{256x^4}}\cdot5\sqrt[5]{\frac{z}{256y^4}}\cdot5\sqrt[5]{\frac{x}{256z^4}}}\)
\(=3\sqrt[3]{125\sqrt[5]{\frac{xyz}{256^3\left(xyz\right)^4}}}\)
\(=15\sqrt[3]{\sqrt[5]{\frac{1}{256^3\left(xyz\right)^3}}}\)
\(\ge15\sqrt[15]{\frac{1}{256^3\cdot\left(\frac{x+y+z}{3}\right)^9}}\)
\(\ge15\sqrt[15]{\frac{1}{256^3\cdot\frac{1}{2^9}}}=\frac{15}{2}\)
Dấu "=" xảy ra tại \(x=y=z=\frac{1}{2}\)
Bài này thì AM-GM thôi
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)
Sử dụng BĐT AM-GM cho 3 số không âm ta có :
\(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)^2}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(zx+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}\)
\(=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{zx+1}{z}\right)}\)
\(=3\sqrt[3]{\left(\frac{xy}{x}+\frac{1}{x}\right)\left(\frac{yz}{y}+\frac{1}{y}\right)\left(\frac{zx}{z}+\frac{1}{z}\right)}=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)
Tiếp tục sử dụng AM-GM cho 2 số không âm ta được :
\(3\sqrt[3]{\left(2\sqrt[2]{y\frac{1}{x}}\right)\left(2\sqrt[2]{z\frac{1}{y}}\right)\left(2\sqrt[2]{x\frac{1}{z}}\right)}\ge3\sqrt[3]{\left(2\sqrt{\frac{y}{x}}\right)\left(2\sqrt{\frac{z}{y}}\right)\left(2\sqrt{\frac{x}{z}}\right)}\)
\(=3\sqrt[3]{8\left(\sqrt{\frac{y}{x}}.\sqrt{\frac{z}{y}}.\sqrt{\frac{x}{z}}\right)}=3\sqrt[3]{8.\sqrt{\frac{xyz}{xyz}}}=3\sqrt[3]{8}=3.2=6\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{2}\)
Vậy \(Min_P=6\)đạt được khi \(x=y=z=\frac{1}{2}\)