Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
\(A=x^2+2xy+y^2-4x-4x+1\)
\(A=\left(x+y\right)^2-8x+1\)
\(\)Thay \(x+y=3\) vào biểu thức ta có :
\(A=3^2-8x+1\)
\(A=10-8x\)
Bài 2
\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)\)
\(=\left[\left(5a-3b\right)+8c\right]\left[\left(5a-3b\right)-8c\right]\)
\(=\left(5a-3b\right)^2-64c^2\)
\(=25a^2-30ab+9b^2-64c^2\)
\(=25a^2-30ab+9b^2-16\left(a^2-b^2\right)\)
\(=9a^2-30ab+25b^2\)
\(=\left(3a-5b\right)^2\)
Vậy đẳng thức đã được chứng minh .
Bài 1:
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2abxy+b^2y^2\)
\(\Leftrightarrow a^2y^2+b^2x^2-2abxy=0\)
\(\Leftrightarrow\left(ay-bx\right)^2=0\)
\(\Leftrightarrow ay=bx\)
\(\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}\)
\(\Rightarrowđpcm\)
Bài 2:
Ta có: \(VT=\left(5a-3b+8c\right)\left(5a-3b-8c\right)\)
\(=\left(5a-3b\right)^2-64c^2\)
\(=25a^2-30ab+9b^2-64c^2\)
\(=25a^2-30ab+9b^2-16a^2+16b^2\left(a^2-b^2=4c^2\right)\)
\(=9a^2-30ab+25b^2=\left(3a-5b\right)^2=VP\)
\(\Rightarrowđpcm\)
bài 1: ta có : \(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(3a-5b\right)^2\)
\(\Leftrightarrow\left(5a-3b\right)^2-\left(8c\right)^2=\left(3a-5b\right)^2\) \(\Leftrightarrow\left(5a-3b\right)^2-\left(3a-5b\right)^2=\left(8c\right)^2\)
\(\Leftrightarrow\left(5a-3b-3a+5b\right)\left(5a-3b+3a-5b\right)=\left(8c\right)^2\)
\(\Leftrightarrow\left(2a+2b\right)\left(8a-8b\right)=64c^2\) \(\Leftrightarrow16\left(a+b\right)\left(a-b\right)=64c^2\)
\(\Leftrightarrow a^2-b^2=4c^2\left(đpcm\right)\)
bài 2 : bài này yc CM j bn ?? ?
bài 3 : a) ta có : \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\left(đpcm\right)\)
b) ta có : \(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+c^2\)
\(\Leftrightarrow ab+bc+ca=a^2+b^2+c^2\) \(\Rightarrow\) giống câu a
c) ta có : \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\) \(\Rightarrow\) giống câu a
1/ Chứng minh các hằng đẳng thức:
\(x^4 + y^4 +(x+y)^4 = x^4 + y^4 + x^4 + 4x^3y + 6x^2y^2 +4xy^3 + y^4 \\\ = 2x^4 +2y^4 +4x^2y^2+4x^3y+4xy^3+2x^2y^2\)
\(= 2(x^4 +y^4 +2x^2y^2)+4xy(x^2+y^2) + 2x^2y^2 \\\ = 2(x^2 + y^2)2 + 4xy(x^2 + y^2) +2x^2y^2\)
\(=2(x^2 +y^2) +2xy(x^2+ y^2) +x^2y^2) = 2(x^2 + y^2 + xy)^2 \\\ ⇒ đpcm\)
2/
Ta có : \([(5a - 3b) + 8c][(5a - 3b) - 8c] \)
\(= (5a - 3b)^2 - 64c^2\) (theo hiệu hai bình phương)
\(= 25a^2 - 30ab + 9b^2 - 64c^2\) (theo bình phương của hiệu)
\(= 25a^2 - 30ab + 9b^2 - 16(a^2 - b^2)\) (vì \(4c^2 = a^2 - b^2\))
\(= 9a^2 - 30ab + 25b^2 \)
\(= (3a - 5b)^2\) (theo bình phương của hiệu).
a)có:
A = (5a – 3b + 8c)(5a – 3b –8c)
= (5a –3b)² – (8c)²
= (25a² – 30ab +9b²) – 64c²
Mà theo đề thì 4c² = a² –b²
Nên ta suy ra:
A = (25a² – 30ab +9b²) – 16(a² –b²)
= 9a² –30ab +25b²
= (3a –5b)²
hoặc
ta có : [(5a - 3b) + 8c][(5a - 3b) - 8c]
= (5a - 3b)^2 - 64c^2 (theo hiệu hai bình phương)
= 25a^2 - 30ab + 9b^2 - 64c^2 (theo bình phương của hiệu)
= 25a^2 - 30ab + 9b^2 - 16(a^2 - b^2) (vì 4c^2 = a^2 - b^2)
= 9a^2 - 30ab + 25b^2
= (3a - 5b)^2 (theo bình phương của hiệu).
b)a^2+b^2)(x^2+y^2)=(ax+by)^2
<=> a^2x^2 + a^2y^2 + b^2x^2 + b^2y^2 = a^2x^2 + 2abxy + b^2y^2
<=> a^2y^2 + b^2x^2 = 2abxy
<=> a^2y^2 + b^2x^2 - 2abxy = 0
<=> (ay - bx)^2 = 0
=> ay - bx = 0
=> ay = bx
=> a/x = b/y ( x,y khác 0