tìm GTNN của A= (5m-5-m^2) / (m^2-m).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (x+1)2 \(\ge0\)\(\ge\) với mọi x
=> 5(x+1)2 \(\ge0\) với mọi
|y-3| \(\ge0\) với mọi y
=>5(x+1)2+|y-3| \(\ge0\) với mọi x,y
=>5(x+1)2+|y-3|-1 \(\ge-1\)
với mọi x,y
=> GTNN của biểu thức trên là -1 tại x=-1, y =3
\(x^2-\left(m+2\right)x+m=0\left(1\right)\)
Để phương trình (1) có nghiệm thì:
\(\Delta\ge0\Rightarrow\left(m+2\right)^2-4m\ge0\)
\(\Leftrightarrow m^2+4\ge0\) (luôn đúng)
Vậy \(\forall m\) thì phương trình (1) luôn có nghiệm.
Theo định lí Viete cho phương trình (1) ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=m\end{matrix}\right.\)
\(A=x_1^3-\left(m+1\right)x_1^2+mx_1-5m\)
\(=x_1^3-\left(x_1+x_2-1\right)x_1^2+x_1\left(m-5\right)\)
\(=x_1^3-x_1^3-x_1^2x_2+x_1^2+x_1\left(x_1x_2-5\right)\)
\(=-x_1^2x_2+x_1^2+x_1^2x_2-5x_1\)
\(=x_1^2-5x_1=\left(x_1^2-5x_1+\dfrac{25}{4}\right)-\dfrac{25}{4}=\left(x_1-\dfrac{5}{2}\right)^2-\dfrac{25}{4}\ge-\dfrac{25}{4}\)
Vậy \(MinA=-\dfrac{25}{4}\).
\(A=\frac{m^2+5m+3}{m^2+m+1}\)
\(\Leftrightarrow A\cdot m^2+A\cdot m+A=m^2+5m+3\)
\(m^2\left(A-1\right)+m\left(A-5\right)+\left(A-3\right)=0\)
Xét \(\Delta=\left(A-5\right)^2-4\left(A-3\right)\left(A-1\right)\)
\(=A^2-10A+25-4\left(A^2-4A+3\right)\)
\(=-3A^2+6A+12\)
Điều kiện có nghiệm là \(\Delta\ge0\) bám vào đk mà đánh giá tiếp
a, \(A=\left|x+1\right|+\left|y-2\right|\)
\(A=\left|x+1\right|+\left|5-x-2\right|\)
\(A=\left|x+1\right|+\left|3-x\right|\ge x+1+3-x=4\)
Dấu " = " sảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\3-x\ge0\end{matrix}\right.\Leftrightarrow-1\le x\le3\)
a, Vì /x-2/ ≥ 0 (với mọi x ∈ R )
=> /x-2/ +5 ≥ 5
Dấu " = " xảy ra khi và chỉ khi /x-2/ = 0 => x-2 = 0 => x=2
Vậy Amin = 5 khi x =2
a,Nhận xét:
\(\left|x-2\right|\ge0\)
\(\rightarrow\left|x-2\right|+5\ge5\)
Vậy Min A=5 khi \(\left|x-2\right|=0\)
\(x-2=0\)
\(x=2\)
b,Nhận xét:
\(\left|x+4\right|\ge0\)
\(12-\left|x+4\right|\)\(\ge12\)
Vậy Max B=12 khi x+4=0
x=4
Ta có: |x+2|>=0(với mọi x)
nên |x+2|-5>=-5 hay M>=-5
Do đó, GTNN của M là -5 khi:
x+2=0
x=0-2
x=-2
Vậy GTNN của M là -5 khi x=-2
\(2x+\left|2x-5\right|=2x+\left|5-2x\right|\ge2x+5-2x=5.\Rightarrow A_{min}=5.\text{Dâu "=" xay }ra\Leftrightarrow2x-5\ge0\Leftrightarrow x\le2,5\)
\(M=\left|x\right|+\left|x-1\right|=\left|x\right|+\left|1-x\right|\ge x+1-x=1\Rightarrow M_{min}=1.\text{Dâu "=" xay ra}\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\1-x\ge0\end{matrix}\right.\Leftrightarrow0\le x\le1\)
\(A=x-\sqrt{x}\Leftrightarrow A+\frac{1}{4}=x-\sqrt{x}+\frac{1}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\Rightarrow A+\frac{1}{4}\ge0\Rightarrow A_{min}=\frac{-1}{4}.\text{Dâus "=" xay ra khi:}x=\frac{1}{4}\)
Bài 1:
Sửa đề :v
\(B=x\left(x-3\right)\left(x-1\right)\left(x-4\right)\)
\(B=\left(x^2-4x\right)\left(x^2-4x+3\right)\)
Đặt \(x^2-4x=t\)
\(B=t\left(t+3\right)\)
\(B=t^2+3t=t^2+2\cdot t\cdot\frac{3}{2}+\frac{9}{4}-\frac{9}{4}=\left(t+\frac{3}{2}\right)^2-\frac{9}{4}\ge\frac{-9}{4}\forall t\)
Dấu "=" xảy ra \(\Leftrightarrow t=\frac{-3}{2}\Leftrightarrow x^2-4x=\frac{-3}{2}\Leftrightarrow x=\frac{4\pm\sqrt{10}}{2}\)
Bài 2: Mình nghĩ nên sửa đề tìm min \(A=\left|2x\right|+\left|2x-5\right|\)
Bài 3:
\(M=\left|x\right|+\left|x-1\right|\)
\(M=\left|x\right|+\left|1-x\right|\ge\left|x+1-x\right|=1\)
Dấu "=" xảy ra \(\Leftrightarrow x\left(1-x\right)\ge0\Leftrightarrow0\le x\le1\)
Bài 4:
\(A=x-\sqrt{x}\)
Do điều kiện \(x\ge0\)
\(\Rightarrow A\ge0+0=0\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
trả hiểu cái gì cả
trả hiểu cái gì cả