K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AC=8cm

b: Xét ΔABK vuông tại A và ΔHBK vuông tại H có

BK chung

\(\widehat{ABK}=\widehat{HBK}\)

Do đó: ΔABK=ΔHBK

c: Xét ΔAIK vuông tại A và ΔHCK vuông tại H có

AI=HC

KA=KH

Do đó:ΔAIK=ΔHCK

Suy ra: \(\widehat{AKI}=\widehat{HKC}\)

=>\(\widehat{HKC}+\widehat{HKI}=180^0\)

=>I,H,K thẳng hàng

d: Xét ΔBIC có BA/AI=BH/HC

nên AH//CI

25 tháng 2 2022

lam câu b với câu rõ hơn được ko bạn

 

a: AC=8cm

b: XétΔABK vuông tại A và ΔHBK vuông tại H có

BK chung

\(\widehat{ABK}=\widehat{HBK}\)

Do đó: ΔABK=ΔHBK

c: Xét ΔBIC có BA/AI=BH/HC

nên AH//CI

d: Xét ΔAKI vuông tại A và ΔHKC vuông tại H có

KA=KH

AI=HC

Do đó: ΔAKI=ΔHKC

Suy ra: \(\widehat{AKI}=\widehat{HKC}\)

=>\(\widehat{AKI}+\widehat{AKH}=180^0\)

hay I,H,K thẳng hàng

a: BC=10cm

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔBAK vuông tại A và ΔBHK vuông tại H có

BK chug

\(\widehat{ABK}=\widehat{HBK}\)

Do đó: ΔBAK=ΔBHK

c: Xét ΔAKI vuông tại A và ΔHKC vuông tại H có

KA=KH

AI=HC

Do đó: ΔAKI=ΔHKC

Suy ra: \(\widehat{AKI}=\widehat{HKC}\)

=>\(\widehat{AKI}+\widehat{AKH}=180^0\)

hay I,H,K thẳng hàng

a: BC=căn 6^2+8^2=10cm

AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔBAK vuông tại A và ΔBHK vuông tại H có

BK chung

góc ABK=góc HBK

=>ΔBAK=ΔBHK

c: Xét ΔKAI vuông tại A và ΔKHC vuông tại H có

KA=KH

AI=HC

=>ΔKAI=ΔKHC

=>góc AKI=góc HKC

=>góc AKI+góc AKH=180 độ

=>I,K,H thẳng hàng

d: Xét ΔBIC có BA/AI=BH/HC

nên AH//IC

5 tháng 6 2021

a, áp dụng định lí py-ta-go ta có:

       BC2 =AB2+AC2

=>    AC2=BC2−AB2

=>    AC2=100−36

=>    AC2=64 => AC=8 cm

vậy AC=8 cm

vì BC>AC>AB(10cm>8cm>6cm)

=>\(\widehat{A}\) > \(\widehat{B}\)>\(\widehat{C}\) (góc đối diện vs cạnh lớn hơn là góc lớn hơn) đpcm

b, Xét 2 t.giác vuông BCA và DCA có:

               AB=AD(gt)

              AC cạnh chung

=> ΔBCA=ΔDCA(cạnh huyền -cạnh góc vuông)

=> BC=DC(2 cạnh tương ứng)

=>\(\Delta\)BCD cân tại C (đpcm)

a: Xét ΔABK và ΔACK có

AB=AC

\(\widehat{BAK}=\widehat{CAK}\)

AK chung

Do đó: ΔABK=ΔACK

b: Ta có: ΔABC cân tại A

mà AK là đường phân giác

nên AK là đường cao

c: Xét tứ giác ABHC có 

K là trung điểm của BC

K là trung điểm của AH

Do đó: ABHC là hình bình hành

Suy ra: AB=CH

loading...

c: Xét ΔCAB vuông tại A và ΔCAD vuông tại A có

CA chung

AB=AD

=>ΔCAB=ΔCAD

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OAa) Chứng minh: Tam giác OAH = tam giác OBHb) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBNc) Chứng minh AB vuông góc với OHd) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C...
Đọc tiếp

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OA

a) Chứng minh: Tam giác OAH = tam giác OBH

b) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBN

c) Chứng minh AB vuông góc với OH

d) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot

2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C sao cho AB - AC. Kẻ BH vuông góc AC (H thuộc AC) và CK vuông góc AB (K thuộc AB)

a) Chứng minh góc ABH = góc ACK

b) BH cắt CK tại E. Chứng minh AE vuông góc BC

c) Tam giác ABC phải thoả mãn điều kiện gì để E là điểm cách đều 3 cạnh ?

3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA

a) Chứng minh: Tam giác AMB = tam giác DMC

b) Chứng minh: AC = BD và AC //BD

c) Chứng minh: Tam giác ABC = tam giác DCB. Tính số đo góc BDC

4. Cho tam giác ABC vuông tại A có góc ABC = 60 độ

a) Tính số đo góc ACB

b) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh tam giác ABD = tam giác ABC

c) Vẽ tia Bx là tia phân giác của góc ABC. Qua C vẽ đường thẳng vuông góc với AC, cắt tia Bx tại E. Chứng minh AC = 1/2 BE

2
1 tháng 8 2016

Võ Hùng Nam hảo hảo a~

Bài 3: 

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra:AC//BD và AC=BD

c: Xét ΔABC và ΔDCB có 

AB=DC

\(\widehat{ABC}=\widehat{DCB}\)

BC chung

Do đó: ΔABC=ΔDCB

Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)